
Minimum-cost paths for electric cars

Dani Dorfman∗ Haim Kaplan∗ Robert E. Tarjan† Mikkel Thorup‡ Uri Zwick∗

Abstract

An electric car equipped with a battery of a finite capacity travels on a road network with an infrastructure
of charging stations. Each charging station has a possibly different cost per unit of energy. Traversing a given
road segment requires a specified amount of energy that may be positive, zero or negative. The car can only
traverse a road segment if it has enough charge to do so (the charge cannot drop below zero), and it cannot
charge its battery beyond its capacity. To travel from one point to another the car needs to choose a travel
plan consisting of a path in the network and a recharging schedule that specifies how much energy to charge at
each charging station on the path, making sure of having enough energy to reach the next charging station or
the destination. The cost of the plan is the total charging cost along the chosen path. We reduce the problem
of computing plans between every two junctions of the network to two problems: Finding optimal energetic
paths when no charging is allowed and finding standard shortest paths. When there are no negative cycles in
the network, we obtain an O(n3)-time algorithm for computing all-pairs travel plans, where n is the number
of junctions in the network. We obtain slightly faster algorithms under some further assumptions. We also
consider the case in which a bound is placed on the number of rechargings allowed.

1 Introduction

An electric car with a battery that can store up to B units of energy travels in a road network with an infrastructure
of charging stations. The road network is represented by a weighted directed graph G = (V,A, c, r), where V is
the set of vertices (junctions), A ⊆ V × V is the set of arcs (road segments), c : A → R and r : V → R+ ∪ {∞}.
We always let n = |V | and m = |A|. For a ∈ A, c(a) is the amount of energy needed to traverse arc a. This
amount can be positive, zero or negative. A negative cost may indicate a downhill segment that can be used to
charge the battery. The battery can be charged, at a certain cost, at some vertices of the network. For every
v ∈ V , r(v) ≥ 0 is the price for one unit of energy at v. If r(v) < ∞, we say that v is a charging station. If
r(v) = ∞ then the battery cannot be charged at v. The car can traverse an arc (u, v) ∈ A only if it is in u and
the charge b ≥ 0 in its battery satisfies b ≥ c(u, v). It then reaches v with a charge of min{b − c(u, v), B} in its
battery. The charge b of the battery always satisfies 0 ≤ b ≤ B, i.e., the charge in the battery cannot drop below
zero and cannot exceed the capacity B.

If c : A → R+, i.e., all arc costs are non-negative, then the graph G = (V,A, c, r) models a traditional road
network with an infrastructure of gas stations in which fuel-based cars can travel.

To travel from s to t the car needs to choose a travel plan composed of a directed path P from s to t, and a
recharging schedule that specifies how much energy to charge at every charging station on P , making sure that
the car always has enough energy to continue its journey. We assume that the car starts at s with an empty
battery. The cost of the plan is the total charging cost along the selected path. We let ρB(s, t) be the minimum
cost of a travel plan from s to t, starting at s with an empty battery, where B is the capacity of the battery. We
also let ρB,∆(s, t) be the minimum cost of a plan that uses at most ∆ charging stops.

Khuller, Malekian and Mestre [9] considered the problem of finding plans in the context of conventional fuel-
based cars, i.e., c : A → R+, and obtained an O(n3 min{∆ log n,∆2})-time algorithm for the all-pairs version,

∗Blavatnik School of Computer Science, Tel Aviv University, Israel. Email: dani.i.dorfman@gmail.com,

{haimk,zwick}@tau.ac.il. Work of Uri Zwick partially supported by grant 2854/20 of the Israeli Science Foundation. Work of
Haim Kaplan partially supported by ISF grant 1595/19 and the Blavatnik family foundation.

†Department of Computer Science, Princeton University. Research partially supported by a gift from Microsoft. Email:
ret@princeton.edu.

‡BARC, University of Copenhagen, Denmark. Research supported by the VILLUM Foundation grant no. 16582. Email:
mikkel2thorup@gmail.com

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

where ∆ ≤ n is a bound on the number of chargings allowed. When no bound is placed on the number of
times the battery can be charged, the running time of their algorithm is O(n4 log n). They also obtained an
O(min{n3,∆n2 log n})-time algorithm for the single-target version of the problem.

Dorfman et al. [4] recently considered a related problem of finding optimal paths for electric cars when no
rechargings along the way are allowed, but when arc costs are also allowed to be negative. When there are no
negative arc costs, the problem is equivalent to the standard shortest paths problem. When there are negative
arc costs the problem becomes a strict extension of the standard shortest paths problem. The problem is also
essentially a special case of the problem considered in this paper.

In this paper we present algorithms for the all-pairs version of the minimum-cost plans problem, allowing
rechargings along the way. The network may contain negative arc costs. When there are no negative cycles, or
when the capacity B of the battery is sufficiently large, we obtain an O(n3)-time algorithm. This improves and
generalizes the O(n4 log n)-time algorithm of Khuller et al. [9], which does not allow negative arc costs. Our O(n3)
time bound also applies when at most ∆ ≤ n rechargings are allowed, improving the O(n3 min{∆ log n,∆2})-time
bound of Khuller et al. [9].

We obtain our new results by showing that finding plans that allow rechargings along the way can be reduced
in a simple way to the problem studied by Dorfman et al. [4], i.e., the problem of finding non-recharging optimal
paths. More specifically, the optimal energetic costs found by the algorithms of Dorfman et al. [4] are used to set
up a constant number of min-plus products. The results of these min-plus products are used as arc costs in an
auxiliary graph on which a standard APSP problem needs to be solved.

The rest of the paper is organized as follows. In the next section we review the results of Dorfman et al. [4]
for the no-rechargings case. In Section 3 we show that the problem of finding plans can be reduced to finding
optimal paths when no rechargings are allowed and to computing standard shortest paths. In Section 4 we use
the reduction to obtain our efficient algorithms for finding plans. In Section 5 we describe a simple reduction in
the opposite direction, from computing standard shortest paths to computing plans, showing that the algorithms
obtained for finding plans are essentially optimal. In Section 6 we consider settings in which the initial charge of
the car is not zero. We end in Section 7 with some concluding remarks and open problems.

2 No rechargings allowed - the quantities αB,a(s, t) and βB,b(s, t)

We review the no-rechargings results of Dorfman et al. [4] and introduce the quantities αB,a(s, t) and βB,b(s, t)
that play an important role in the reduction presented in the next section.

Let αB,a(s, t) be the Maximum Final Charge (MFC) with which the car can reach t if it starts in s with
charge a, where 0 ≤ a ≤ B, in its battery, when no recharging is allowed along the way. If it is not possible to
get from s to t with an initial charge of a at s, we let αB,a(s, t) = −∞. We will mostly be interested in the cases
a = 0 or a = B, i.e., starting from s with either an empty or a full battery.

Let βB,b(s, t) be the Minimum Initial Charge (MIC) needed in s in order to reach t with a charge of at least b
when again no recharging is allowed along the way. If it is not possible to get to t with a charge of b even if we
start from s with a charge of B, i.e., with a full battery, we let βB,b(s, t) = ∞. Again, we are mostly interested
in the cases b = 0 or b = B.

If all arc costs are non-negative then it is easy to see that αB,a(s, t) = a − δ(s, t), if a ≥ δ(s, t), and
αB,a(s, t) = −∞ otherwise, where δ(s, t) is the standard distance from s to t in the graph, i.e., the length of the
shortest path from s to t with respect to the cost function c. Similarly, βB,b(s, t) = δ(s, t) + b, if δ(s, t) + b ≤ B,
and βB,b(s, t) = ∞ otherwise. Thus, if all arc costs are non-negative, then αB,a(s, t) and βB,b(s, t) for all s, t ∈ V
and a, b ∈ {0, B}, can be easily computed after solving a standard All-Pairs Shortest Paths (APSP) problem.

When arc costs can be both positive and negative, computing all values of αB,a(s, t) and βB,b(s, t) is more
difficult. Dorfman et al. [4] gave an O(mn+ n2 log n)-time algorithm for the all-pairs versions when there can be
negative arcs but there are no negative cycles and an O(mn2+n3 log n)-time algorithm when there can be negative
cycles. They also gave an O(mn+ n2 log n)-time algorithm for the all-pairs versions when there can be negative
cycles, if the capacity of the battery is sufficiently large, namely B ≥ 3nM , where M = max(u,v)∈A |c(u, v)|. 1

The algorithms of Dorfman et al. [4], which we do not repeat here, work with another quantity δB,a(s, t) =
a − αB,a(s, t), the minimum depletion of the battery when starting at s with a charge a in the battery. This
quantity is closely related to the standard distance δ(s, t) from s to t in the graph and in some cases equal to it.

1This can be improved to B ≥ nM .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

They show that δB,a(s, t) can be computed by suitable adaptations of the standard Bellman-Ford and Dijkstra

algorithms. They also show that βG
B,b(s, t) = B−α

←
G
B,B−b(t, s), where

←
G is the graph obtained from G by reversing

the direction of all arcs, maintaining the arc costs. Thus, algorithms for computing αB,a(s, t) can also be used
to compute βB,b(s, t), and vice versa. (This is true for the all-pairs version of the problems. A single-source
algorithm for the maximum final charges αB,a(s, t) becomes a single-target algorithm for the minimum initial
charges βB,b(s, t).)

3 Handling rechargings by reduction to no rechargings

In this section we describe a simple reduction from computing ρB(s, t), for every s, t ∈ V , to the computation of
αB,a(s, t) and βB,b(s, t), for every s, t ∈ V and a, b ∈ {0, B}, and to the solution of a standard all-pairs shortest
paths (APSP) problem on an auxiliary network.

No assumptions are made in this section on c : A → R. Arc costs may be negative and the graph may even
contain negative cycles. (ρB(s, t) is well-defined even in the presence of negative cycles.) For simplicity we assume
that all finite charging costs r(v) are distinct. (Ties can be broken easily.)

3.1 Travel plans We begin with a formal definition of travel plans. We use ua, where u ∈ V and a ∈ [0, B] to
denote the state in which the car is at u with a charge of a in its battery. A travel plan is then simply a sequence
of states such that the move between two consecutive states corresponds to either traversing an arc of the graph,
or recharging the battery by a certain amount.

Definition 3.1. (Travel plans) A travel plan P from s to t in a graph G = (V,A, c, r) is a sequence
ua0
0 ua1

1 . . . uaℓ

ℓ , where s = u0, u1, . . . , uℓ = t ∈ V , 0 = a0, 0 ≤ ai ≤ B for all 0 ≤ i ≤ ℓ, and such that for
every i = 0, 1, . . . , ℓ− 1, either (ui, ui+1) ∈ A, ai ≥ c(ui, ui+1) and ai+1 = min{ai − c(ui, ui+1), B}, corresponding
to legally traversing an arc, or ui = ui+1 and ai < ai+1, corresponding to a charging of the battery. The cost of
the plan is cost(P) =

∑
i∈R r(ui)(ai+1 − ai), where R = {0 ≤ i ≤ ℓ | ui = ui+1} is the set of indices in which

rechargings take place.

If P = ua0
0 ua1

1 . . . uaℓ

ℓ is a travel plan, then u0, u1, . . . , uℓ is the path used by the plan, where each vertex in
which a recharging takes place has two consecutive appearances. A minimum-cost plan from s to t is of course a
plan from s to t whose cost is minimum. If the graph contains no negative cycles, it is not difficult to see that a
path used by an optimal plan may be assumed to be simple. This is not true, however, in the presence of negative
cycles.

Conceptually, we can define an infinite graph G = (V, E , ℓ), where V = {ua | u ∈ V , a ∈ [0, B]}, E = E1 ∪ E2,
E1 = {(ua, vb) | (u, v) ∈ A , a ≥ c(u, v) , b = min{a − c(u, v), B}, E2 = {(ua, ub) | u ∈ V , a < b}, and where
ℓ(ua, vb) = 0, for every (ua, vb) ∈ E1, and ℓ(ua, ub) = r(u)(b − a), for every (ua, ub) ∈ E2. Then a travel plan is
simply a path in G, and the cost of the plan is simply the length of the path with respect to the length function ℓ.
The challenge, of course, is to efficiently compute shortest paths in this implicit infinite graph. (If all arc costs
are integral, the graph becomes finite, but its size is O(B(m+ n)) which is still too large.)

3.2 Structure of optimal plans Each plan P from s to t can be partitioned into segments P = P0P1 . . . Pk

such that no rechargings take place within each segment and such that a recharging does take place when moving
from segment to segment. Each segment Pi is then of the form Pi = xbi

i · · ·xci
i+1, where ci < bi+1, if i < k. Also

s = x0 and t = xk+1. The whole plan P is then xb0
0 · · ·xc0

1 |xb1
1 · · ·xc1

2 |xb2
2 · · ·xc2

3 | · · · |xbk−1

k−1 · · ·xck−1

k |xbk
k · · ·xck

k+1,
where each vertical line separates two segments and indicates a place at which a charging takes place. The vertices
x1, x2, . . . , xk are the vertices in which rechargings take place. (If no rechargings take place along P , then k = 0
and P = P0. If a charging takes place at s, then s = x0 = x1 and P0 = s0.)

The following two lemmas are extensions of similar lemmas of Khuller, Malekian and Mestre [9].

Lemma 3.1. Let P be a minimum-cost plan from s to t. Let P = P0P1 . . . Pk a partition of P into segments as
above, and let Pi = xbi

i · · ·xci
i+1, where ci < bi+1, if i < k. Recall that x1, x2, . . . , xk are the vertices on P in which

rechargings take place and that s = x0 and t = xk+1. Then, for i = 1, . . . , k − 1,

(i) If r(xi) > r(xi+1), then Pi contains a state y0i , i.e., a vertex yi at which the car has an empty battery. (The
vertex yi may be xi+1 but not xi.)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 1: A schematic description of Lemmas 3.1 and 3.2. The height of a vertex represents the charge in the
battery. Dotted red lines represent rechargings.

(ii) If r(xi) < r(xi+1), then Pi contains a state yBi , i.e., a vertex yi at which the car has a full battery. (The
vertex yi may be xi but not xi+1.)

Proof. Let 1 ≤ i < k and let Pi = ua1
1 ua2

2 . . . uaℓ

ℓ , where ua1
1 = xbi

i and uaℓ

ℓ = xci
i+1. Let di = bi − ci−1 > 0 and

di+1 = bi+1 − ci > 0 be the amount of charge added to the battery at xi and xi+1, respectively.
(i) Assume that r(xi) > r(xi+1). Let ε = min{a1, a2, . . . , aℓ}. If ε = 0, we are done, as there is an index

1 ≤ j ≤ ℓ such that aj = 0. (Note that j ≥ 2 as a1 > 0.) Otherwise, let δ = min{di, ε} > 0. We can then replace

the segment Pi in P with the segment P ′
i = ua1−δ

1 ua2−δ
2 . . . uaℓ−δ

ℓ . This is equivalent to charging δ less at xi and δ
more at xi+1. The resulting plan P ′ is valid and cost(P ′) = cost(P)− δ (r(xi)− r(xi+1)) < cost(P), contradicting
the optimality of P .

(ii) Assume that r(xi) < r(xi+1). Let ε = B−max{a1, a2, . . . , aℓ}. If ε = 0, we are done, as there is an index
1 ≤ j ≤ ℓ such that aj = B. (Note that j < ℓ as aℓ < B.) Otherwise, let δ = min{di+1, ε} > 0. We can then

replace the segment Pi in P with the segment P ′
i = ua1+δ

1 ua2+δ
2 . . . uaℓ+δ

ℓ . This is equivalent to charging δ more
at xi and δ less at xi+1. The resulting plan P ′ is valid and cost(P ′) = cost(P) + δ (r(xi) − r(xi+1)) < cost(P),
again contradicting the optimality of P .

See Figure 1 for a schematic description of Lemma 3.1 and the following Lemma 3.2 which follows almost
immediately from Lemma 3.1.

Lemma 3.2. Let P be a minimum-cost plan from s to t. Then, there are states ya0
0 , ya1

1 . . . , yak

k on P such that
s = y0, t = yk, a0 = 0, and ai ∈ {0, B}, for i = 1, . . . , k − 1, and such that at most one recharging takes place
between yai

i and y
ai+1

i+1 on P , for i = 0, . . . , k − 1. (In other words yi is either reached with an empty battery, or
left with a full battery, for each i = 0, 1, . . . , k − 1. Note that ak, the final charge at yk = t, is not required to be
in {0, B}.)

Proof. Let P = P0P1 . . . Pk be the partition of P as in Lemma 3.1. By the lemma, each segment Pi, for
i = 1, 2, . . . , k − 1, contains a state yai

i , where ai ∈ {0, B}. Let ya0
0 = s0 and yak

k = tak , where ak is the
final charge at t according to P . The sequence ya0

0 , ya1
1 . . . , yak

k satisfies all the required properties. In fact, there
is exactly one recharging between yai

i and y
ai+1

i+1 on P , for i = 0, . . . , k − 1, unless k = 0, in which case ya0
0 = s0,

y1 = ta1 and there is no recharging between them.

We note that in the sequence ya0
0 , ya1

1 . . . , yak

k whose existence is proved in Lemma 3.2 we may have yi = yi+1,
in which case ai = 0 and ai+1 = B. This can happen if yai

i is the last state in Pi and y
ai+1

i+1 is the first state
in Pi+1.

If there are no negative arc costs, then a minimum-cost plan from s to t always reaches t with an empty
battery. This is not necessarily the case when arc costs may be negative.

3.3 The reduction Lemma 3.2 suggests the following algorithm for computing ρB(s, t) for every s, t ∈ V .
Construct a complete graph G0,B on the vertex set V 0,B = V 0 ∪ V B , where V a = {ua | u ∈ V }, for a ∈ {0, B}.
Here, ua corresponds to being at u with charge of at least a in the battery. We define a new cost function ℓB such
that ℓB(u

a, vb), where u, v ∈ V and a, b ∈ {0, B}, is the minimum cost of getting from u to v, starting with an

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

initial charge of a at u and reaching v with a charge of at least b, when at most one recharging is allowed along the
way. By Lemma 3.2, computing minimum-cost plans in the original graph would then reduce to finding shortest
paths in G0,B with respect to the cost function ℓB . More specifically, ρB(s, t) = δℓB (s

0, t0), for every s, t ∈ V ,
where δℓB (s

0, t0) is the distance from s0 to t0 with respect to ℓB . (Note that t0 here stands for reaching t with
a charge of at least 0. When there are negative arc costs, a minimum-cost plan may reach the destination with
strictly positive charge.)

We next describe how the new costs ℓB(u
a, vb) are computed. This is the main step of our reduction. Consider

the cheapest way of getting from ua to vb, i.e., from u with initial charge a to v with final charge at least b, with
(an optional) recharging at a given vertex x ∈ V along the way. Recharging is not allowed in any other vertex.
(We do not assume that u, v and x are distinct. We may even have u = v = x.) Clearly, we should choose
a path from ua to x that reaches x with the maximum possible charge, namely αB,a(u, x). We then buy just
enough charge at x to reach v with a charge of at least b. The minimum initial charge at x required to reach vb is
βB,b(x, v). The amount of charge we need to buy at x is thus (βB,b(x, v)− αB,a(u, x))

+, where z+ = max{0, z}.
(If αB,a(u, x) > βB,b(x, v), we do not need to recharge at x.) Considering all choices for the recharging vertex x,
including u and v, we get:

ℓ(ua, vb) = min
x∈V

r(x) · (βB,b(x, v)− αB,a(u, x))
+ .

We allow the case x = u, in which case αB,a(u, u) ≥ a. (Strict inequality is possible in the presence of negative
cycles.) We also allow the case x = v, in which case βB,b(v, v) ≤ b. (Again a strict inequality is possible in the
presence of negative cycles.)

To compute ℓ(ua, vb) we first remove the + from the definition of ℓ(ua, vb), namely,

ℓ′(ua, vb) = min
x∈V

r(x) · (βB,b(x, v)− αB,a(u, x)) .

It is then easy to see that

ℓ(ua, vb) = ℓ′(ua, vb)+ ,

as if ℓ′(ua, vb) < 0 then it is possible to get from ua to vb without recharging, i.e., at cost 0.
To compute ℓ′(ua, vb) we form a layered graph (V 0,B × U) ∪ (U × V 0,B), where U = {x ∈ V | r(x) < ∞}.

(We assume that different copies of V 0,B are used in the first and third layers of this graph, see Figure 2.) We let

w(ua, x) = −r(x)αB,a(u, x) , w(x, vb) = r(x)βB,b(x, v) .

Now ℓ′(ua, vb) can be computed using a single min-plus product.2 The time required is O(n3) using the näıve
algorithm, or slightly faster using the algorithm of Williams [13, 14], assuming that all αB,a(u, x) and βB,b(x, v)
values are given to us.

The following lemma formally proves the correctness of the reduction. Recall that δℓB (s
0, t0) is the distance

from s0 to t0 in the graph G0,B with respect to ℓB .

Lemma 3.3. ρB(s, t) = δℓB (s
0, t0), for every s, t ∈ V .

Proof. Any path P from s0 to t0 in the complete graph G0,B with the cost function ℓB corresponds to a
plan P ′ from s to t in the original graph G whose cost is exactly ℓB(P). More specifically, let P be the
path s = y00 , y

a1
1 , . . . , y

ak−1

k−1 , y0k = t. Then each arc (yai
i , y

ai+1

i+1) can be replaced by a plan in the original

graph G whose cost is ℓ(yai
i , y

ai+1

i+1). Concatenating all these plans we get a plan P ′ in G whose total cost is

ℓB(P) =
∑k−1

i=0 ℓ(yai
i , y

ai+1

i+1). Thus, ρB(s, t) ≤ δℓB (s
0, t0).

Conversely, let P ′ be a minimum-cost plan from s to t in the original graph G. By Lemma 3.2 there are states
ya0
0 , ya1

1 , . . . , yak

k on P such that ya0
0 = s0, yk = t, a0, . . . , ak−1 ∈ {0, B}, and such that at most one recharging

takes place between yai
i and y

ai+1

i+1 . Let P be the path s = y00 , y
a1
1 , ya2

2 . . . , y0k in G0,B . (Note that we replaced ak
here by 0, possibly throwing away extra charge with which the plan reaches t.) The cost ℓB(P) of P is at most
the cost of the plan P ′. Thus, ρB(s, t) ≥ δℓB (s

0, t0).

2The min-plus product of an n × p matrix A = (ai,j) and a p × n matrix A = (ai,j), is the n × n matrix C = (ci,j) defined by
ci,j = minpk=1 ai,k + bk,j , for every 1 ≤ i, j ≤ n.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 2: The min-plus product used to compute ℓ′(ua, vb), for every u, v ∈ V and a, b ∈ {0, B}. The vertices in
the middle layer are the vertices x ∈ V for which r(x) < ∞.

Let MCP(m,n) denote the the problem of computing all-pairs Minimum-Cost Plans on a graph with n
vertices and m arcs, i.e., the computation of ρB(s, t) for every s, t ∈ V . Let MFC(m,n) denote the problem of
computing all-pairs Maximum Final Charges, i.e., the computation of αB,a(s, t) for every s, t ∈ V , for a given
0 ≤ a ≤ B, on a graph with n vertices and m arcs. Let MIC(m,n) denote the problem of computing all-pairs
Minimum Initial Charges, i.e., the computation of βB,b(s, t) for every s, t ∈ V , for a given 0 ≤ b ≤ B, again on a
graph with n vertices and m arcs. Let MPP(n, p) be the problem of computing a Min-Plus Product of an n× p
matrix and a p × n matrix. Finally, let APSP(m,n) be the problem of computing the All-Pairs Shortest Paths,
i.e., δ(s, t) for every s, t ∈ V , on a graph with n vertices and m edges.

Putting everything together, we get:

Theorem 3.1. MCP(m,n) can be reduced to two instances of MFC(m,n) and MIC(m,n) each, an instance of
MPP(2n, p), where p ≤ n is the number of charging stations, and an instance of APSP(4n2, 2n).

We need two instances of MFC(m,n), for a = 0, B, and two instances of MIC(m,n), for b = 0, B. As
noted, MIC(m,n) can be reduced to MFC(m,n) by simply reversing the graph. It is also interesting to note that
APSP (n2, n) can be reduced to a collection of MPP(n, n) problems that can be solved in the time needed for a
single MPP(n, n) instance (see Aho et al. [1]). Also, MPP(n, p) can easily be reduced to APSP (2np, 2n+ p).

Similarly, if we let MCP∆(m,n) be the problem of computing ρB,∆(s, t) for every s, t ∈ V , i.e., computing
minimum-cost plans between every pair of vertices when at most ∆ rechargings are allowed, and APSP∆(u, v) be
the problem of computing all-pairs shortest paths that are allowed to contain at most ∆ arcs, then we have

Theorem 3.2. MCP∆(m,n) can be reduced to two instances of MFC(m,n) and MIC(m,n) each, an instance of
MPP(2n, p), where p ≤ n is the number of charging stations, and an instance of APSP∆(4n

2, 2n).

4 Algorithms for minimum-cost plans

Using the reduction of the previous section and the best available algorithms for the Maximum Final Charge
(MFC), Minimum Initial Charge (MIC), Min-plus product (MPP) and All-Pairs Shortest Paths (APSP) we
obtain the following results:

Theorem 4.1. The all-pairs version of the Minimum-Cost Plans (MCP) problem in a graph with no negative

cycles can be solved in O(n3

2c
√

log n +mn) = O(n3) time, for some c > 0. The same time bound, with a different
constant c, applies when at most ∆ ≤ n rechargings can be used on each path.

Proof. Dorfman et al. [4] gave algorithms for solving the MFC and the MIC problems in O(mn+ n2 log n) time,

on graphs with no negative cycles. The MPP and APSP problems can be solved in O(n3

2c
√

log n) time using a
randomized algorithm of Williams [13, 14], or a deterministic algorithm of Chan and Williams [2], for some c > 0.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

When a bound ∆ is placed on the number of chargings, we need to solve an APSP∆(n
2, n) problem, rather

than an APSP(n2, n) problem. It is well-known that such a problem can be solved by computing O(log∆) MPP

problems, 3 and hence can also be solved in O(n3

2c
√

log n) time, for some c > 0. (Note that n3 logn

2c
√

log n = O(n3

2c′
√

log n) for
any c′ < c.)

The bound in Theorem 4.1 also applies when there may be negative cycles, if the capacity B of the battery
is sufficiently large, i.e., B ≥ nM , where M = max(u,v)∈A |c(u, v)|. (For simplicity, we did not include this in the
statement of the theorem.)

We note that the instance of the APSP problem that we need to solve is dense, i.e., m = n2. Thus, efficient
algorithms for sparse instances of the APSP problem, such as the O(mn + n2 log n)-time algorithm obtained by
running Dikstra’s [3] algorithm from every vertex, implemented using Fibonacci heaps [7] or Hollow heaps [8], or
the slightly faster O(mn + n2 log log n)-time algorithm of Pettie [10], would both require O(n3) time. We also
note that a slightly faster algorithm for solving the APSP∆(n

2, n) problem can be obtained using the sampling
technique of Zwick [16], showing that when ∆ > log n, the O(log∆) min-plus products can essentially be replaced
by only O(log log n) such products. This does not change the value of the constant c.

Theorem 4.2. The all-pairs version of the Minimum-Cost Plan (MCP) problem in a graph that may contain
negative cycles can be solved in O(mn2+n3 log n) time. The same time bound applies when at most ∆ rechargings
can be used on each path.

Proof. Dorfman et al. [4] gave algorithms for solving the all-pairs MFC and MIC problems in O(mn2 + n3 log n)
time on graphs that may contain negative cycles. The MPP problem can be solved in O(n3) time using the näıve
algorithm and the APSP(n2, n) problem can be solved in O(n3) time using the Floyd-Warshall algorithm [6, 12].
The APSP∆(n

2, n) can be solved in O(n3 log∆) = O(n3 log n) time by solving O(log∆) MPP problems.

All the time bounds above are in a model similar to the addition-comparison model used for standard shortest
paths algorithms. (See, e.g., Zwick [15].) Arc and recharge costs can be arbitrary real numbers but it is assumed
that ‘reasonable’ operations on them can be performed in constant time. Faster algorithms can be obtained if
the battery capacity B is a relatively small integer, all arc costs c(a) are integers, and all charging costs r(v) are
fairly small integers. In particular, if R = max{r(v) | v ∈ V , r(v) < ∞}, then all arc lengths in the APSP(n2, n)
instance that needs to be solved are in {0, 1, . . . , BR}. Zwick [16] obtained an O(M1/(4−ω)n2+1/(4−ω))-time
algorithm for the APSP problem when arc lengths are integers of absolute value at most M , where ω is the
exponent of matrix multiplication. Currently ω < 2.3719 due to a recent result of Duan, Wu and Zhou [5]. Note
that the running time of this algorithm is subcubic when M ≪ n3−ω, or in our case when BR ≪ n3−ω. If ω > 2,
then an improved running time can be obtained using rectangular matrix multiplication. See Zwick [16] for the
exact details.

Faster algorithms can also be obtained for the MFC and MIC problems in the word-RAM model, in which
arc costs are assumed to be integers that fit into single machine words. This is done by replacing the standard
comparison-based priority queues used by these algorithms by word-RAM priority queues. (See, e.g., Thorup [11].)
The running times of the improved algorithms, when there are no negative cycles, are still Ω(mn). Thus, no
improvement is obtained over the bound given in Theorem 4.1.

5 Reducing shortest paths to minimum-cost plans

In this short section we describe a trivial reduction from APSP(m,n) to MCP(m + n, 2n), showing that the
Minimum-Cost Plans (MCP) problem is at least as hard as the classical All-Pairs Shortest Paths (APSP) problem.

Theorem 5.1. The APSP(m,n) problem in a graph with nonnegative arc costs can be reduced in linear time to
an MCP(m+ n, 2n) problem.

Proof. Let G = (V,A, c), where c : A → R+ be the input to the APSP problem. Construct a graph
G′ = (V ′, A′, c′, r′) where V ′ = {v′, v | v ∈ V } and A′ = {(v′, v) | v ∈ V } ∪ A. Let c′(v′, v) = 0, for every

3We simply need to raise the weighted adjacency matrix of the graph, with zeros on the diagonal, to the ∆-th power with respect
to min-plus products. This can be easily done using O(log∆) min-plus products.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

v ∈ V , and c′(a) = c(a), if a ∈ A. Also, let r(v′) = 1 and r(v) = ∞, for every v ∈ V . Let B = nmaxa∈A c(a). We
have δG(s, t) = ρG

′

B (s′, t), for every s, t ∈ V , where δG(s, t) is the distance from s to t in G and ρG
′

B (s′, t) is the
minimum cost of a plan from s′ to t in G′. This follows since in G′ it is only possible to charge the battery at the
initial vertex and all arc costs are non-negative. Thus, a plan corresponds to a standard shortest path.

6 Non-zero initial charges

Up to this point, we considered optimal travel plans from s to t in which the car starts from s with an empty
battery. (In particular, if no recharging is possible at s and all outgoing arcs of s have positive costs, the car
cannot move out of s.) It is natural to also consider the case in which the car starts at s with some fixed initial
charge a. (For example, a = B corresponds to the case in which the car starts from s with a full battery.)

6.1 Fixed initial charges A simple reduction allows us to solve, within the same asymptotic time bounds,
the all-pairs version of the MCP problem in which each vertex v ∈ V has a fixed initial charge 0 ≤ a(v) ≤ B
associated with it. The initial charges at different vertices are not necessarily the same.

For each original vertex v ∈ V create a new vertex v0 and add an arc (v0, v) whose cost is −a(v). Let
r(v0) = ∞, i.e., no recharging is possible at v0. (Alternatively, we could let r(v0) = r(v).) Starting at v0 with
an empty battery corresponds to starting at v with a charge of a(v). The new graph has 2n vertices and m+ n
vertices. Thus, the asymptotic running times of the algorithms given in Section 4 are unaffected.

6.2 Adding an initial charge or a source vertex A further natural generalization is to allow an arbitrary
initial charge a, not known in advance, at a specified source vertex s. We show that if there are no negative cycles
in the graph, then after the all-pairs version of the MCP problem with zero initial charges is solved, we can solve
the single-source version of the MCP problem from a given source vertex s and an initial charge a in O(n2) time.

The problem above corresponds to adding a new vertex s0 with r(s0) = ∞, i.e., no charging at s0, and
an arc (s0, s) of cost −a and solving the single-source version of the MCP problem from s0 with an initial
charge of 0. We actually solve the more general problem in which we add new vertex s0 and a collection of arcs
(s0, v1), (s0, v2), . . . , (s0, vk) to an arbitrary number of original vertices of the graph, each with possibly different
cost c(s0, vi) = −ai ≤ 0. This corresponds to the option of using one of several available electric cars, where the
i-th available car is at vertex vi and has an initial charge of ai.

We present a reduction from the problem of adding a new source vertex to a graph on which the all-pair
MCP problem was already solved, to the solution of two single-source MFC problems and two vector-matrix
min-plus products. When there are no negative cycles in the graph, the two single-source MFC problems can be
solved in O(m+ n log n) time, using a feasible potential function computed while solving the all-pairs MFC and
MIC problems on the original graph. (See [4] for details.) The two 1× 2n by 2n× 2n min-plus products can be
computed näıvely in O(n2) time.

We start by computing αB,0(s0, v), αB,B(s0, v) for every v ∈ V . These are the two instances of the single-
source MFC problem.

Next, as in Section 3.3, we compute ℓB(s
0
0, v

b), for every v ∈ V and b ∈ {0, B}. Recall that ℓB(s
0
0, v

b) is the
minimum cost of getting from s0 to v, starting with an empty battery and arriving with either an empty or full
battery and using at most one recharging. This can be done in O(n2) time by näıvely computing a vector-matrix
min-plus product.

Now, since we already know δℓB (u
a, v0), for every u, v ∈ V and a ∈ {0, B}, we can compute ρB(s, v), for

every v ∈ V using an additional vector-matrix min-plus product, again in O(n2) time. More concretely, for every
v ∈ V , we have ρB(s0, v) = minu∈V,a∈{0,B} ℓB(s

0
0, u

a) + δℓB (u
a, v0). Correctness follows again by Lemma 3.2.

7 Concluding remarks

We have presented a simple reduction from the problem of computing Minimum-Cost Plans (MCP) between all
pairs of vertices in a graph to two simpler problems: The first is the computation of optimal energetic paths
when no recharging of the battery is allowed. This problem comes in two equivalent variants: Maximum Final
Charge (MFC) and Minimum Initial Charge (MIC). The second problem is the standard All-Pairs Shortest
Paths problem.

Using this simple reduction we have obtained an O(n3

2c
√

log n + mn)-time algorithm for solving the MCP in

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

graphs with no negative cycles. This matches the running time of the fastest APSP algorithm of Williams [13, 14],
unless m is extremely close to n2.

An interesting open problem is whether there is an Õ(mn)-time algorithm for the all-pairs MCP problem in
n-vertex, m-arc graphs, essentially matching the complexity of the standard APSP problem for sparse graphs.

Another interesting open problem is whether there is an Õ(n3)-time algorithm for the all-pairs MCP problem
when the input graph may contain negative cycles. (An interesting feature of the MCP problem is that minimum-
cost plans are well-defined, and are of finite length, even in this case. They may not be simple, however.)

All algorithms presented assume that B, the maximum capacity of the battery, and ∆, the maximum number
of rechargings allowed on each path, are fixed and known in advance. Is it possible to obtain an efficient algorithm
that preprocesses an input graph and is then able to quickly answer queries of the form ρB,∆(s, t), i.e., what is
the minimum cost of a plan from s to t when the capacity of the battery is B and at most ∆ rechargings are
allowed on the way from s to t?

Finally, we remark that we considered the natural problem of finding minimum-cost plans, ignoring the time
it takes to traverse arcs or to charge the battery. Finding a plan that can be implemented within a given time
limit is easily seen to be a NP-hard problem by a reduction from 0-1 knapsack. Similarly, the problem becomes
NP-hard if each arc (u, v) has a monetary cost r(u, v), i.e., a toll that should be paid to traverse the arc, in
addition to its energetic cost c(u, v), and the goal is to minimize the cost of travelling from s to t. It may be
possible to obtain interesting approximation algorithms, but this is beyond the scope of the current paper.

Acknowledgement

We would like to thank two anonymous SOSA reviewers for valuable comments that helped improve the paper.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of computer algorithms. Addison-
Wesley, 1974.

[2] Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing
Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.

[3] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.
[4] Dani Dorfman, Haim Kaplan, Robert E. Tarjan, and Uri Zwick. Optimal energetic paths for electric cars. In Proc.

of 31st ESA, 2023. See also CoRR, abs/2305.19015.
[5] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. CoRR,

abs/2210.10173, 2022. To appear in FOCS 2023.
[6] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.
[7] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization

algorithms. Journal of the ACM, 34(3):596–615, 1987.
[8] Thomas Dueholm Hansen, Haim Kaplan, Robert E. Tarjan, and Uri Zwick. Hollow heaps. ACM Trans. Algorithms,

13(3):42:1–42:27, 2017.
[9] Samir Khuller, Azarakhsh Malekian, and Julián Mestre. To fill or not to fill: The gas station problem. ACM

Transactions on Algorithms (TALG), 7(3):1–16, 2011.
[10] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci., 312(1):47–74,

2004.
[11] Mikkel Thorup. Integer priority queues with decrease key in constant time and the single source shortest paths

problem. J. Comput. Syst. Sci., 69(3):330–353, 2004.
[12] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.
[13] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput., 47(5):1965–1985, 2018.
[14] R. Ryan Williams. From circuit complexity to faster all-pairs shortest paths. SIAM Rev., 63(3):559–582, 2021.
[15] Uri Zwick. Exact and approximate distances in graphs - A survey. In Proc. of 9th ESA, volume 2161 of Lecture Notes

in Computer Science, pages 33–48. Springer, 2001.
[16] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM, 49(3):289–317,

2002.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	No rechargings allowed - the quantities alpha(s,t) and beta(s,t)
	Handling rechargings by reduction to no rechargings
	Travel plans
	Structure of optimal plans
	The reduction

	Algorithms for minimum-cost plans
	Reducing shortest paths to minimum-cost plans
	Non-zero initial charges
	Fixed initial charges
	Adding an initial charge or a source vertex

	Concluding remarks

