
Expander Decomposition with Fewer Inter-Cluster1

Edges Using a Spectral Cut Player2

Daniel Agassy3

Tel Aviv University, Israel4

Dani Dorfman5

Tel Aviv University, Israel6

Haim Kaplan7

Tel Aviv University, Israel8

Abstract9

A (ϕ, ϵ)-expander decomposition of a graph G (with n vertices and m edges) is a partition of V10

into clusters V1, . . . , Vk with conductance Φ(G[Vi]) ≥ ϕ, such that there are at most ϵm inter-cluster11

edges. Such a decomposition plays a crucial role in many graph algorithms. We give a randomized12

Õ(m/ϕ) time algorithm for computing a (ϕ, ϕ log2 n)-expander decomposition. This improves upon13

the (ϕ, ϕ log3 n)-expander decomposition also obtained in Õ(m/ϕ) time by [Saranurak and Wang,14

SODA 2019] (SW) and brings the number of inter-cluster edges within logarithmic factor of optimal.15

One crucial component of SW’s algorithm is a non-stop version of the cut-matching game of16

[Khandekar, Rao, Vazirani, JACM 2009] (KRV): The cut player does not stop when it gets from17

the matching player an unbalanced sparse cut, but continues to play on a trimmed part of the large18

side. The crux of our improvement is the design of a non-stop version of the cleverer cut player19

of [Orecchia, Schulman, Vazirani, Vishnoi, STOC 2008] (OSVV). The cut player of OSSV uses a20

more sophisticated random walk, a subtle potential function, and spectral arguments. Designing21

and analysing a non-stop version of this game was an explicit open question asked by SW.22
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1 Introduction30

The conductance of a cut (S, V \ S) is ΦG(S, V \ S) = |E(S,V \S)|
min(vol(S),vol(V \S)) , where vol(S) is31

the sum of the degrees of the vertices of S. The conductance of a graph G is the smallest32

conductance of a cut in G.33

A (ϕ, ϵ)-expander decomposition of a graph G is a partition of the vertices of G into clusters34

V1, . . . , Vk with conductance Φ(G[Vi]) ≥ ϕ such that there are at most ϵm inter-cluster edges,35

where ϕ, ϵ ≥ 0. We consider the problem of computing in almost linear time (Õ(m) time)36

a (ϕ, ϵ)-expander decomposition for a given graph G and ϕ > 0, while minimizing ϵ as a37

function of ϕ. It is known that a (ϕ, ϵ)-expander decomposition, with ϵ = O(ϕ logn), always38

exists and that ϵ = Θ(ϕ logn) is optimal [23, 2].39

Expander decomposition algorithms have been used in many cutting edge results, such40

as directed/undirected Laplacian solvers [27, 11], graph sparsification [9, 10], distributed41

algorithms [6], and maximum flow algorithms [15]. Expander decomposition was also used42
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56:2 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

[10] (in the deterministic case) in order to break the O (
√
n) dynamic connectivity bound43

and achieve an improved running time of O(no(1)) per operation. It was also used in the44

recent breakthrough result by Chen et al. [8], who showed algorithms for maximum flow and45

minimum cost flow in almost linear time.46

Given an f(n)-approximation algorithm for the problem of finding a minimum conductance47

cut, one can get a (ϕ,O(f(n) ·ϕ logn))-expander decomposition algorithm by recursively com-48

puting approximate cuts (and thus splitting V ) until all components are certified as expanders.49

In particular, using an exact minimum conductance cut algorithm ensures the existence of50

an expander decomposition with ϵ = O (ϕ logn) as mentioned above. Using the polynomial51

algorithms of [20, 4] which provide the best approximation ratios of O
(√
ϕ
)

and O
(√

logn
)
,52

respectively, for conductance, gives polynomial time expander decomposition algorithms with53

ϵ = O
(
ϕ3/2 logn

)
and ϵ = O

(
ϕ log

3
2 n
)

. However, these decomposition algorithms might54

lead to a linear recursion depth, and therefore have superlinear time complexity.55

To get a near linear time algorithm using this recursive approach, one must be able to56

efficiently compute low conductance cuts with additional guarantees. We get such cuts using57

the cut-matching framework of [16] (abbreviated as KRV). In order to present our results in58

the appropriate context we now give a brief background on the cut-matching framework.59

Cut-matching: Edge-expansion is a connectivity measure related to conductance. The60

edge-expansion of a cut (S, V \ S) is hG(S, V \ S) = |E(S,V \S)|
min(|S|,|V \S|) and the edge-expansion of61

a graph G is the smallest edge-expansion of a cut in G.62

The cut-matching game is a technique that reduces the approximation task for sparsest63

cut (in terms of edge-expansion) to a polylogarithmic number of maximum flow problems.64

The resulting approximation algorithm for sparsest cut is remarkably simple and robust.65

The cut-matching game is played between a cut player and a matching player, as follows.66

We start with an empty graph G0 on n vertices. At round t, the cut player chooses a bisection67

(St, St) of the vertices (we assume n is even). In response, the matching player presents a68

perfect matching Mt between the vertices of St and St and the game graph is updated to69

Gt = Gt−1 ∪ Mt. Note that this graph may contain parallel edges. The game ends when70

Gt is a sufficiently good edge-expander. The goal of this game is to devise a strategy for71

the cut player that maximizes the ratio r(n) := ϕ/T , where T is the number of rounds and72

ϕ = h(GT ) is the edge-expansion of GT . KRV showed that one can translate a cut strategy of73

quality r(n) into a sparsest cut algorithm of approximation ratio 1/r(n) by applying a binary74

search on a sparsity parameter ϕ until we certify that h(G) ≥ ϕ and h(G) = O(ϕ/r(n)).75

KRV devised a randomized cut-player strategy that finds the bisection using a stochastic76

matrix that corresponds to a random walk on all previously discovered matchings. Their walk77

traverses the previous matchings in order and with probability half takes a step according to78

each matching. They showed that the matrix corresponding to this random walk can actually79

be embedded (as a flow matrix) into Gt with constant congestion. They terminate when the80

random walk matrix is close to uniform (i.e. having constant edge-expansion), resulting in81

GT for T = O
(
log2 n

)
, having constant edge-expansion.82

Orecchia et al. [21] (abbreviated as OSVV) took the same approach but devised a more83

sophisticated random walk and used Cheeger’s inequality [7] in order to show that GT , for84

T = O
(
log2 n

)
, has Ω (logn) edge-expansion. That is, they got a ratio of r(n) = Ω

(
1

log n

)
.85

Equipped with this background we now get back to expander decomposition, and focus86

on the Õ(m/ϕ) time algorithm by Saranurak and Wang [23] (abbreviated as SW). Their87

algorithm is randomized, follows the recursive scheme described above, and computes a88

(ϕ, ϕ log3 n)-expander decomposition in O
(

m log4 n
ϕ

)
time. Its number of inter-cluster edges89
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is off by a factor of O
(
log2 n

)
from optimal and off by a factor of O

(
log

3
2 n
)

from the90

aforementioned best achievable polynomial time construction.91

One core component of this algorithm is a variation of the cut-matching game (inspired92

by Räcke et al. [22]). In this variation, the game graph Gt = (Vt, Et) may lose vertices93

(i.e., Vt+1 ⊆ Vt) throughout the game and the objective of the cut player is to make VT94

a near expander in GT (see Definition 9). The result of each round does not consist of95

a perfect matching in Vt, but rather a subset to remove from Vt and a matching of the96

remaining vertices. The game ends either with a balanced cut of low conductance, or with97

an unbalanced cut of low conductance, such that the larger side is a near expander. This98

allows SW to avoid recurring on the large side of the cut. Indeed, if the cut is balanced, they99

run recursively on both sides, and if it is unbalanced, they use the fact that the large side is100

a near expander and “trim” it by finding a large subset of this side which is an expander.101

Then, they run recursively on the smaller side combined with the “trimmed” vertices. SW’s102

analysis of the new cut-matching game is based on the ideas and the potential function of103

KRV while carefully taking into account of the shrinkage of the game graph.104

An open question, raised by SW, was whether one can adapt the technique of the cut-105

matching strategy of OSVV to improve their decomposition. A major obstacle is how to106

perform an OSVV-like spectral analysis when we lose vertices throughout the process and107

need to bound the near-expansion of the final piece. This is challenging as the analysis of108

OSVV is already somewhat more complicated than that of KRV: It uses a different lazy109

random walk and a subtle potential to measure progress towards near expansion. Moreover110

Cheeger’s inequality is suitable to show high expansion and the object we are targeting is a111

near expander.112

Our contribution: In this paper we answer this question of SW affirmatively. We113

present and analyze an expander decomposition algorithm with a new cut-player inspired by114

OSVV. This improves the result of SW and gives a randomized Õ(m/ϕ) time algorithm for115

computing an (ϕ, ϕ log2 n)-expander decomposition (Theorem 18). This brings the number116

of inter-cluster edges to be off only by O(logn) factor from the best possible.117

To achieve this we overcome two main technical challenges: (1) We generalize the lazy118

random walk of the cut player of OSVV and the subtle potential tracking its progress, to119

the setting in which the vertex set shrinks (by ripping off of it small cuts as in SW). (2) We120

show that when the generalized potential is small the remaining part of the game graph is a121

near expander. This required a generalization of Cheeger’s inequality appropriate for our122

purpose (see Lemma 33).123

Our techniques may be applied in similar contexts. One concrete such context is the124

construction of tree-cut sparsifiers. Specifically, one could try to use our technique to improve125

the O
(
log4 n

)
-approximate tree-cut sparsifier construction of [22] by a factor of logn. (Note126

that [22] in fact construct a tree-flow sparsifier, which is a stronger notion.)127

The cut-matching framework [16] is formalized for edge-expansion rather than conduct-128

ance. Consequently, SW and others whose primary objective is conductance had to transform129

the graph into a subdivision-graph in order to use this framework. The subdivision graph is130

obtained by adding a new vertex (called a split-node) in the middle of each edge e, splitting131

e into a path of length two. Consequently, the analysis has to translate cuts of low expansion132

in the modified graph (the subdivision graph) to cuts of low conductance in the original133

graph. This transformation complicates the algorithms and their analysis.134

To avoid this transformation we revisit the seminal results of KRV and OSVV and redo135

them directly for conductance. This is not trivial and requires subtle changes to the cut136

players, and the matching players, and the potentials measuring progress towards a graph137

ICALP 2023



56:4 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

with small conductance. In particular the matching player does not produce a matching138

anymore but rather what we call a dG-matching, which is a graph with the same degrees as G.139

Our new cut-matching algorithm is then described using this natural reformulation of the140

cut-matching framework directly for conductance, removing the complications that would141

have followed from using the split graph.142

We believe that our clean presentations of the cut-matching framework for conductance143

would prove useful for other applications of cut-matching that require optimization for144

conductance rather than expansion.145

Further related work: Computing the expansion and the conductance of a graph146

G is NP-hard [18, 25], and there is a long line of research on approximating these con-147

nectivity measures. The best known polynomial algorithms for approximating the minimum148

conductance cut have either O
(√

logn
)

[4, 24] or O
(√

Φ(G)
)

approximation ratios [20].149

Approximation algorithms for expansion and conductance play a crucial role in algorithms150

for expander decomposition [23, 5, 10], expander hierarchies [12, 14], and tree flow sparsifiers151

[22].152

In his thesis, Orecchia [19] elaborates on the two cut-matching strategies described in153

OSVV, one based on a lazy random walk, called CNAT, and a more sophisticated one based154

on the heat-kernel random walk, called CEXP. Orecchia proves (Theorem 4.1.5 of [19]) that155

using CNAT or CEXP , after T = Θ(log2 n) iterations, the graph GT has expansion Ω(logn)156

(and thereby conductance Ω
(

1
log n

)
, since it is regular with degrees Θ(log2 n)). Orecchia also157

bounds the second largest eigenvalue of the normalized Laplacian of GT . However, Orecchia158

does not show how to use cut-matching to get approximation algorithms for the conductance159

of G.160

In a recent paper [3] Ameranis et al. use a generalized notion of expansion, also mentioned161

in [19], where we normalize the number of edges crossing the cut by a general measure162

(µ) of the smaller side of the cut. They define a corresponding generalized version of the163

cut-matching game, and show how to use a cut strategy for this game to get an approximation164

algorithm for two generalized cut problems. They claim that one can construct a cut strategy165

for this measure using ideas from [19].1166

Both SW and our result can be implemented in Õ(m) time using the recent result of167

[17], by replacing Bounded-Distance-Flow (Lemma 21) and the “Trimming Step” of [23]168

with the algorithm of [17, Section 8]. This Õ(m) hides many log factors and requires more169

complicated machinery.170

The structure of this paper is as follows. Section 2 contains additional definitions. In171

order to provide the appropriate context for our work, Section 3 gives an overview of the172

cut-matching games in [16] and [21] and highlights the differences between them. In the full173

version of this paper, we give a complete and self-contained description of these approximation174

algorithms directly for conductance. A reader knowledgeable in the Cut-Matching game175

can skip directly to Section 4. In Section 4 we present our new non-stop spectral cut player176

and expander decomposition algorithm. Section 5 contains the analysis of our algorithm.177

Due to the space constraints some of the proofs are omitted, and are available in the full178

version of this paper [1].179

To be consistent with common terminology we refer to a graph with conductance at least180

ϕ as a ϕ-expander (rather than ϕ-conductor.) No confusion should arise since in the rest of181

this paper we focus on conductance and do not use the notion of edge-expansion anymore.182

1 The details of such a cut player do not appear in [3] or [19].
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In this paper we only focus on unweighted graphs, although our algorithm can be adapted to183

the case of integral, polynomially bounded weights.184

2 Preliminaries185

We denote the transpose of a vector or a matrix x by x′. That is, if v is a column vector186

then v′ is the corresponding row vector. For a vector v ∈ Rn
≥0, define

√
v to be vector whose187

coordinates are the square roots of those of v. Given A ∈ Rn×n, we denote by A(i, j) the188

element at the i’th row and j’th column of A. We denote by A(i, ), A(, i) the i’th row and189

column of A, respectively. We define both A(i, ) and A(, i) as column vectors. We use the190

abbreviation A(i) := A(i, ) only with respect to the rows of A. Given a vector v ∈ Rn, we191

denote its i’th element by v(i). For disjoint A,B ⊆ V , we denote by EG(A,B) the set of192

edges connecting A and B. We sometimes omit the subscript when the graph is clear from193

the context. If A = V \B, then we call (A,B) a cut.194

▶ Fact 1. Let X,Y ∈ Rn×n,m ∈ N, then Tr(XY ) = Tr(Y X).195

▶ Fact 2. Let X,Y ∈ Rn×n be symmetric matrices and let k ∈ N. Then

Tr
(

(XYX)2k
)

≤ Tr
(
X2k

Y 2k

X2k
)
.

▶ Definition 3 (dG,volG(S)). Given a graph G, the vector dG ∈ Rn is defined as dG(v) =196

degG(v). To simplify the notation, we denote d := dG whenever the graph G is clear from197

the context. For S ⊆ V , we denote by volG(S) :=
∑

v∈S dG(v) the volume of S.198

▶ Definition 4 (G{A}). Let G = (V,E) be a graph, and let A ⊆ V be a set of vertices. We199

define the graph G{A} = (V ′, E′) as the graph induced by A with self-loops added to preserve200

the degrees: V ′ = A,E′ = {{u, v} ∈ E : u, v ∈ A} ∪ {{u, u} : u ∈ A, v ∈ V \A, {u, v} ∈ E}.201

▶ Definition 5 (d-Matching). Given a vector d ∈ Nn and a collection of pairs M =202

{(ui, vi)}m
i=1. We say that M is a d-matching if the graph defined by M (i.e., the graph203

whose edges are M) satisfies dM (v) = d(v), for every v.204

▶ Definition 6 (dG-stochastic). A matrix F ∈ Rn×n is dG-stochastic with respect to a graph205

G if the following two conditions hold: (1) F · 1n = dG and (2) 1′
n · F = d′

G.206

▶ Definition 7 (Laplacian, Normalized Laplacian). Let A ∈ Rn×n be a symmetric matrix207

and let d = A · 1n, D = diag(d). The Laplacian of A is defined as L(A) = D − A. The208

normalized-Laplacian of A is defined as N (A) = D− 1
2 L(A)D− 1

2 = I − D− 1
2AD− 1

2 . The209

(normalized) Laplacian of an undirected graph is defined analogously using its adjacency210

matrix.211

▶ Definition 8 (Conductance). Let G = (V,E) and S ⊂ V , S ̸= ∅. The conductance of the212

cut (S, V \ S), denoted by ΦG(S, V \ S), is213

ΦG(S, V \ S) = |E(S, V \ S)|
min(vol(S),vol(V \ S)) .214

The conductance of G is defined to be Φ(G) = minS⊆V ΦG(S, V \ S).215

▶ Definition 9 (Expander, Near-Expander). Let G = (V,E). We say that G is a ϕ-expander216

if Φ(G) ≥ ϕ. Let A ⊆ V . We say that A is a near ϕ-expander in G if217

min
S⊆A

|E(S, V \ S)|
min(vol(S),vol(A \ S)) ≥ ϕ.218

ICALP 2023



56:6 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

That is, a near expander is allowed to use cut edges that go outside of A. Note that the219

above definition applies to both directed and undirected graphs.220

▶ Definition 10 (Embedding). Let G = (V,E) be an undirected graph. Let F ∈ RV ×V
≥0 be a221

matrix (not necessarily symmetric). We say that F is embeddable in G with congestion c, if222

there exists a multi-commodity flow f in G, with |V | commodities, one for each vertex (vertex223

v is the source of its commodity), such that, simultaneously for each (u, v) ∈ V × V , f routes224

F (u, v) units of u’s commodity from u to v, and the total flow on each edge is at most c. 2
225

If F is the weighted adjacency matrix of a graph H on the same vertex set V , we say226

that H is embeddable in G with congestion c if F is embeddable in G with congestion c.227

▶ Lemma 11. Let G,H be two graphs on the same vertex set V . Let A ⊆ V . Let α > 0 be a228

constant such that for each v ∈ V , dG(v) = α ·dH(v). Assume that H is embeddable in G with229

congestion c, and that A is a near ϕ-expander in H. Then, A is a near ϕ
cα -expander in G.230

▶ Corollary 12. Let G,H be two graphs on the same vertex set V . Let α > 0 be a constant231

such that for each v ∈ V , dG(v) = α · dH(v). Assume that H is embeddable in G with232

congestion c, and that H is a ϕ-expander. Then, G is a ϕ
cα -expander.233

Proof. This follows from Lemma 11 by choosing A = V . ◀234

3 Approximating conductance via cut-matching235

In preparation for our expander decomposition algorithm we give a high level overview of the236

conductance approximation algorithms of [16] and [21]. [16] and [21] described their results237

for edge-expansion rather than conductance. In the full version of this paper, we give a238

complete description and analysis of these algorithms for conductance. This translation from239

edge-expansion to conductance is not trivial as both the cut player, the matching player,240

and the analysis have to be carefully modified to take the degrees into account. Here we give241

a high level overview of the key components of these algorithms and the differences between242

them so one can better absorb our main algorithm in Section 4.2.243

The cut-matching game of [16] (in the conductance setting) works as follows.244

The Cut-Matching game for conductance, with parameters T and a degree vector d:
The game is played on a series of graphs Gi. Initially, G0 = ∅.
In iteration t, the cut player produces two multisets of size m, Lt, Rt ⊆ V , such that
each v ∈ V appears in Lt ∪Rt exactly d(v) times.
The matching player responds with a d-matching Mt that only matches vertices in
Lt to vertices in Rt.
We set Gt+1 = Gt ∪Mt.
The game ends at iteration T , and the quality of the game is r := Φ(GT ). Note that
the volume of Gt increases from one iteration to the next.

245

Given a strategy for the cut player of quality r, one can create a 1
r approximation246

algorithm for the conductance of a given graph G. To this end, the matching player has to247

provide matchings that can be embedded in G.248

The difference between the results of [16] and [21] is mainly in the cut player. They249

both run the game for T = Θ(log2 n) iterations but [16]’s cut player achieves quality of r =250

2 This definition requires to route F (u, v) = F (v, u) both from u to v and from v to u if F is symmetric.
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Ω
(

1
log2 n

)
whereas [21]’s achieves quality of r = Ω

(
1

log n

)
. Notice that the cut player produces251

the stated expansion result in GT regardless of the matchings given by the matching player.252

3.1 KRV’s Cut-Matching Game for Conductance253

The cut player implicitly maintains a dG-stochastic flow matrix (i.e., representing flow254

demands) Ft ∈ Rn×n, and the graph Gt which is the union of the matchings that it obtained255

so far from the matching player (t is the index of the round). The flow Ft and the graph256

Gt have two crucial properties. First, we can embed Ft in Gt with O(1) congestion (See257

Definition 10). Second, after T = Θ(log2 n) rounds, with high probability, FT will have258

constant conductance.3 Since the degrees in GT are factor of O(log2 n) larger than the259

degrees in FT (when we think of FT as a weighted graph) then it follows by Corollary 12 that260

GT is Ω(1/ log2 n) expander. Note that the cut player is unrelated to the input graph G in261

which we would like to approximate the conductance. Its goal is to produce the expander GT .262

At the beginning, F0 = D = diag(d), and G0 is the empty graph on V = [n]. The cut263

player updates Ft as follows. It draws a random unit vector r ∈ Rn orthogonal to
√
d and264

computes the projections ui = 1
d(i) ⟨D− 1

2Ft(i), r⟩.4 The cut player computes these projections265

in O(m log2 n) time since the vector of all projections is u := D−1FtD
− 1

2 · r and Ft is defined266

(see below) as a multiplication of Θ(log2 n) sparse matrices, each having O(m) non-zero267

entries. The cut player sorts the projections as ui1 ≤ ... ≤ uin . Consider the sequence268

Q = (ui1 , ui1 , . . . , ui1 , ui2 , ui2 , . . . , ui2 , . . . , uin
, . . . , uin

), where each uij
appears d(ij) times.269

Then, |Q| = 2m. Take Lt ⊆ Q to be the multi-set containing the first m elements, and270

Rt = Q \ Lt to be the multi-set containing the last m elements. Define η ∈ R such that271

Lt ⊆ {ik : uik
≤ η} and Rt ⊆ {ik : uik

≥ η}. Note that a vertex can appear both in Lt and272

in Rt, if uij = η. For a vertex v ∈ V , denote by mv the number of times v appears in Lt,273

and by m̄v the number of times v appears in Rt. That is, except for (maybe) one vertex, for274

any v ∈ V , either mv = 0 and m̄v = d(v) or mv = d(v) and m̄v = 0.275

The cut player hands out the partition Lt, Rt to the matching player who sends back a276

dG-matching Mt (we think of Mt as an n×n matrix with at most m non-zero entries that en-277

codes the matching) between Lt and Rt. The cut player updates its flow matrix using Mt and278

sets Ft+1(v) = 1
2Ft(v)+

∑
(v,u)∈Mt

1
2d(u)Ft(u) (in matrix form Ft+1 = 1

2
(
I +Mt ·D−1)Ft).5279

This update keeps Ft a dG-stochastic matrix for all t. The cut player also defines the graph280

Gt+1 as Gt+1 = Gt ∪Mt. This completes the description of the cut player of [16] adapted281

for conductance.282

The matching player constructs an auxiliary flow problem on G′ := G ∪ {s, t}, where s is283

a new vertex which would be the source and t is a new vertex which would be the sink. We284

add an arc (s, v) for each v ∈ Lt of capacity mv and we add an arc (v, t) of capacity m̄v for285

each v ∈ Rt. The capacity of each edge e ∈ G is set to be c = Θ
(

1
ϕ log2 n

)
, where c is an286

integer. The matching player computes a maximum flow g from s to t in this network.287

If the value of g is less than m, then the matching player uses the minimum cut in G′
288

separating the source from the sink to find a cut in G of conductance O(ϕ log2 n). Otherwise,289

3 We think about Ft as a weighted graph on V = [n]. The definitions of conductance, expander and
near-expander for weighted graphs are the same as Definitions 8-9 where |E(S, V \ S)| is the sum of the
weights of the edges crossing the cut.

4 Recall that Ft(i) is a column vector.
5 Note that it is possible that some u ∈ V appears in the sum

∑
(v,u)∈Mt

1
2d(u) Ft(u) multiple times, if v

is matched to u multiple times in Mt.

ICALP 2023



56:8 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

it decomposes g to a set of paths, each carrying exactly one unit of flow from a vertex u ∈ Lt290

to a vertex v ∈ Rt.6 Then it defines the dG-matching Mt as Mt = ((vj , uj))m
j=1, where vj291

and uj are the endpoints of path j. We view Mt as a symmetric n × n matrix, such that292

Mt(v, u) is the number of paths between v and u. The matching player connects the game to293

the input graph G. Indeed, by solving the maximum flow problems in G it guarantees that294

the expander GT is embeddable in G with congestion O(cT ) = O(1/ϕ). Since the degrees of295

GT are a factor of O(log2 n) larger than the degrees of G and GT is Ω(1/ log2 n) expander,296

we get that G is a Ω(ϕ)-expander (see Corollary 12). The following theorem summarizes the297

properties of this algorithm.298

▶ Theorem 13 ([16]’s cut-matching game for conductance). Given a graph G and a parameter299

ϕ > 0, there exists a randomized algorithm, whose running time is dominated by computing300

a polylogarithmic number of maximum flow problems, that either301

1. Certifies that Φ(G) = Ω(ϕ) with high probability; or302

2. Finds a cut (S, V \ S) in G whose conductance is ΦG(S, V \ S) = O(ϕ log2 n).303

If the matching player finds a sparse cut in any iteration then we terminate with Case304

(2). On the other hand, if the game continues for T = O(log2 n) rounds then since the cut305

player can embed FT in GT and the matching player can embed GT in G, and since Ft is306

an expander, then we get Case (1).307

The running time of the cut player is O(m log4 n). The matching player solves O(log2 n)308

maximum flow problems. By using the most recent maximum flow algorithm of [8], we get the309

matching player to run in O
(
m1+o(1)) time. Alternatively, we can adapt the cut-matching310

game, and use a version of the Bounded-Distance-Flow algorithm (which was called Unit-Flow311

in [23]; see Lemma 21), to get a running time of Õ( m
ϕ ) for the matching player. We can also312

get Õ(m) running time using the recent result [17].313

The key part of the analysis is to show that FT is indeed an Ω(1)-expander for any choice314

of dG-matchings of the matching player. To this end, we keep track of the progress of the315

cut player using the potential function316

ψ(t) =
∑
i∈V

∑
j∈V

1
d(i) · d(j)

(
Ft(i, j) − d(i)d(j)

2m

)2
=
∥∥∥∥D− 1

2FtD
− 1

2 − 1
2m

√
d
√
d′
∥∥∥∥2

F

317

where the matrix norm which we use here is the Frobenius norm (sum of the squares of318

the entries). This potential represents the distance between the normalized flow matrix319

F̄t = D− 1
2FtD

− 1
2 and the (normalized) uniform random walk distribution dGd

′
G/2m. Let320

P = I − 1
2m

√
d
√
d′ be the projection matrix on the orthogonal complement of the span of321

the vector
√
d, then we can also write this potential as322

ψ(t) =
∥∥F̄tP

∥∥2
F

= Tr
(
(F̄tP )(F̄tP )′) = Tr(F̄tP

2F̄ ′
t ) = Tr(PF̄ ′

t F̄t).323
324

The first equality holds since Ft is d-stochastic and the last equality is due to Fact 1 (and325

that P 2 = P as a projection matrix).326

The crux of the proof is to show that after T rounds this potential is smaller than327

1/(16m2) which implies that for every pair of vertices u and v, FT (u, v) ≥ d(v)d(u)/(4m).328

From this we get a lower bound of 1/4 on the conductance of every cut.329

6 Note that there can be multiple flow paths between a pair of vertices u ∈ Lt and v ∈ Rt. Furthermore,
if u ∈ Lt ∩ Rt then it is possible that a path starts and ends at u.
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3.2 OSVV’s Cut-Matching Game for Conductance330

The cut player of [21] also maintains (implicitly) a flow matrix Ft and the union Gt of the331

dG-matchings it got from the matching player. Let P = I − 1
2m

√
d
√
d′ be the projection to332

the subspace orthogonal to
√
d as before (hence P 2 = P ). Let δ = Θ(logn) be a power of 2.333

Here the matrix Wt = (PD− 1
2FtD

− 1
2P )δ takes the role of D− 1

2FtD
− 1

2 from the cut player334

of Section 3.1.335

In round t the cut player computes the projections ui = 1√
d(i)

⟨Wt(i), r⟩, and defines Lt336

and Rt based on these projections as in the previous section.7 Then it gets a dG-matching337

Mt between Lt and Rt from the matching player. It defines Nt = δ−1
δ D + 1

δMt and updates338

the flow to be Ft+1 = Nt ·D−1FtD
−1Nt. If we think of Ft as a random walk then D−1Nt339

is a lazy step that we add before and after the walk Ft to get Ft+1. It holds that Ft+1 is340

dG-stochastic and moreover that for all rounds t, Ft is embeddable in Gt with congestion341

4
δ = O(1/ logn). Note that here we embed Ft in Gt with smaller congestion than in Section342

3.1. We can still prove, however, that FT for T = O(log2 n) is a Ω(1) expander and therefore,343

GT is a Ω(1/ logn) expander.344

The matching player solves the same flow problem as in Section 3.1 but with an integer345

capacity value of c = Θ( 1
ϕ log n ) on the edges of G. If the value of maximum flow is less than346

m then it finds a cut of conductance O(ϕ logn), and otherwise it returns the matching that it347

derives from a decomposition of the flow into paths. The matching player guarantees that the348

expander GT is embeddable in G with congestion O(cT ) = O(logn/ϕ). Since the degrees of349

GT are larger by a factor of O(log2 n) than the degrees of G and GT is Ω(1/ logn)-expander,350

we get that G is a Ω(ϕ)-expander (see Lemma 11). The following theorem summarizes the351

properties of this algorithm.352

▶ Theorem 14 ([21]’s cut-matching game for conductance). Given a graph G and a parameter353

ϕ > 0, there exists a randomized algorithm, whose running time is dominated by computing354

a polylogarithmic number of maximum flow problems, that either355

1. Certifies that Φ(G) = Ω(ϕ) with high probability; or356

2. Finds a cut (S, V \ S) in G whose conductance is ΦG(S, V \ S) = O(ϕ logn).357

The running time of the cut player is dominated by computing the projections in358

O(m log3 n) time per iteration for a total of O(m log5 n) time. The matching player solves359

O(log2 n) maximum flow problems. Again, we can modify the algorithm so that its running360

time is Õ( m
ϕ ) or Õ(m), similarly to the previous subsection.361

As in Section 3.1, the key part of the analysis is to show that FT is indeed an Ω(1)-362

expander for any choice of dG-matchings of the matching player. Here we keep track of the363

progress of the cut player using the potential function364

ψ(t) =
∥∥∥∥(D− 1

2FtD
− 1

2 )δ − 1
2m

√
d
√
d′
∥∥∥∥2

F

.365

366

Recall that Wt = (PD− 1
2FtD

− 1
2P )δ, so we can rewrite the potential function as367

ψ(t) =
∥∥∥(D− 1

2FtD
− 1

2 )δP
∥∥∥2

F
= Tr(P (D− 1

2FtD
− 1

2 )2δP ) (4)= Tr((PD− 1
2FtD

− 1
2P )2δ) = Tr(W 2

t ) ,368369

7 Computing these projections takes O(m log3 n) time since Ft is a multiplication of Θ(log2 n) sparse
matrices, each with O(m) non-zero entries. Therefore Wt is a multiplication of Θ(log3 n) matrices, each
of which is either P or a sparse matrix.
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where equality (4) follows since Ft is d-stochastic and the fact that P 2 = P . A careful370

argument shows that after T = O(log2 n) iterations, ψ(T ) ≤ 1/n. From this we deduce that371

the second smallest eigenvalue of the normalized Laplacian of FT is at least 1/2 and then by372

Cheeger’s inequality [7] we get that Φ(FT ) = Ω(1).373

4 Expander decomposition via spectral Cut-Matching374

To put our main result in context we first show how SW [23] modified the cut-matching375

game of KRV [16] for their expander decomposition algorithm.376

4.1 SW’s Cut-Matching for expander decomposition377

SW [23] take a recursive approach to find an expander decomposition. One can use the378

cut-matching game to find a sparse cut, but if the cut is unbalanced, we want to avoid379

recursing on the large side.380

In order to refrain from recursing on the large side of the cut, SW changed the cut-381

matching game as follows. The cut player now maintains a partition of V into a small set R382

and a large set A = V \R, where initially R = ∅ and A = V . In each iteration the cut and383

the matching player interact as follows.384

The cut player computes two disjoint sets Al, Ar ⊆ A such that |Al| ≤ n/8 and |Ar| ≥ n/2.385

The matching player returns a partition (S,A \ S) of A, which may be empty (S = ∅),386

and a matching of Al \ S to a subset of Ar \ S.387

The cut player computes the sets Al and Ar by projecting the rows of a flow-matrix F388

that it maintains (as in KRV [16]) onto a random unit vector r, and applying a result by [22]389

to generate the sets Al and Ar from the values of the projections. For the matching player,390

SW use a flow-based algorithm which simultaneously gives a cut (S,A \ S) of conductance391

O(ϕ log2 n) of G[A], and a matching of the vertices left in Al \ S to vertices of Ar \ S (S392

may be empty when G[A] has conductance ≥ ϕ). If the matching player found a sparse cut393

(S,A \ S) then the cut player updates the partition (R,A) of V by moving S from A to R.394

The game terminates either when the volume of R gets larger than Ω(m/ log2 n) or after395

O(log2 n) rounds. In the latter case, SW proved that the remaining set A (which is large) is396

a near ϕ-expander in G (see Definition 9).397

To prove that after T = Θ(log2 n) iterations, the remaining set A is a near ϕ-expander, SW398

essentially followed the footsteps of KRV and used a similar potential. The argument is more399

complicated since they have to take the shrinkage of A into account. SW did not use a version400

of KRV suitable to conductance as we give in the full version. Therefore, they had to modify401

the graph by adding a split node for each edge, essentially reducing conductance to edge-402

expansion, a reduction that made their algorithm and analysis somewhat more complicated.403

The following theorem summarized the properties of the cut-matching game of [23].404

▶ Theorem 15 (Theorem 2.2 of [23]). Given a graph G = (V,E) of m edges and a parameter405

0 < ϕ < 1/ log2 n,8 there exists a randomized algorithm, called “the cut-matching step”,406

which takes O ((m logn)/ϕ) time and terminates in one of the following three cases:407

1. We certify that G has conductance Φ(G) = Ω(ϕ) with high probability.408

8 The theorem is trivial if ϕ ≥ 1
log2 n

, because any cut (A, V \ A) has conductance ΦG(A, V \ A) ≤ 1. We
can therefore assume that ϕ < 1

log2 n
.
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2. We find a cut (R,A) of G of conductance ΦG(R,A) = O(ϕ log2 n), and vol(R),vol(A)409

are both Ω( m
log2 n

), i.e., we find a relatively balanced low conductance cut.410

3. We find a cut (R,A) of G with ΦG(R,A) ≤ c0ϕ log2 n for some constant c0, and vol(R) ≤411

m
10c0 log2 n

, and with high probability A is a near ϕ-expander in G.412

SW derived an expander decomposition algorithm from this modified cut-matching game413

by recursing on both sides of the cut only if Case (2) occurs. In Case (3) they find a large414

subset B ⊆ A which is an expander (in what they called the trimming step), add A \B to R415

and recur only on R. The main result of [23] is as follows.416

▶ Theorem 16 (Theorem 1.2 of [23]). Given a graph G = (V,E) of m edges and a parameter417

ϕ, there is a randomized algorithm that with high probability finds a partitioning of V into418

clusters V1, . . . , Vk such that ∀i : ΦG{Vi} = Ω(ϕ) and there are at most O(ϕm log3 n) inter419

cluster edges.9 The running time of the algorithm is O(m log4 n/ϕ).420

4.2 Our contribution: Spectral cut player for expander decomposition421

SW [23] left open the question if one can improve their expander decomposition algorithm422

using tools similar to the ones that allowed OSVV [21] to improve the conductance approx-423

imation algorithm of KRV [16]. We give a positive answer to this question. Specifically we424

improve the cut-matching game of SW and derive the following improved version of Theorem425

15.426

▶ Theorem 17. Given a graph G = (V,E) of m edges and a parameter 0 < ϕ < 1
log n ,10

427

there exists a randomized algorithm which takes O
(
m log5 n+ m log2 n

ϕ

)
time and must end428

in one of the following three cases:429

1. We certify that G has conductance Φ(G) = Ω(ϕ) with high probability.430

2. We find a cut (R,A) in G of conductance ΦG(R,A) = O(ϕ logn), and vol(R),vol(A)431

are both Ω( m
log n ), i.e, we find a relatively balanced low conductance cut.432

3. We find a cut (R,A) with ΦG(R,A) ≤ c0ϕ logn for some constant c0, and vol(R) ≤433

m
10c0 log n , and with high probability A is a near Ω(ϕ)-expander in G.434

The proof of Theorem 17 is given in Section 5. Theorem 17 implies the following theorem435

▶ Theorem 18. Given a graph G = (V,E) of m edges and a parameter ϕ, there is a436

randomized algorithm that with high probability finds a partition of V into clusters V1, ..., Vk437

such that ∀i : ΦG{Vi} = Ω(ϕ) and
∑

i |E(Vi, V \ Vi)| = O(ϕm log2 n). The running time of438

the algorithm is O(m log7 n+ m log4 n
ϕ ).11

439

To get Theorem 17 we use the following cut player and matching player.440

9 G{Vi} is defined in Definition 4.
10 The theorem is trivial if ϕ ≥ 1

log n , because any cut (A, V \ A) has conductance ΦG(A, V \ A) ≤ 1. We
can therefore assume that ϕ < 1

log n .
11 Note that if ϕ ≤ 1

log3 n
, then the running time matches the running time of [23] in Theorem 16. In case

that ϕ ≥ 1
log3 n

, we get a slightly worse running time of O(m log7 n) instead of O( m log4 n
ϕ ).
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4.3 Cut player441

Like in Section 3, we consider a d-stochastic flow matrix Ft ∈ Rn×n, and a series of graphs442

Gt. F0 is initialized as F0 = D := diag(d), and G0 is initialized as the empty graph on443

V = [n]. Here the cut player also maintains a low conductance cut At ⊆ V,Rt = V \ At,444

such that after T = Θ(log2 n) rounds, with high probability, AT is a near expander in GT .445

At the beginning, A0 = V , R0 = ∅,446

Since the new cut-matching game consists of iteratively shrinking the domain At ⊆ V ,447

we start by generalizing our matrices from Section 3 to this context of shrinking domain.448

▶ Definition 19 (It, dt, Dt, Pt,volt). We define the following variables12
449

1. It ∈ Rn×n is the diagonal 0/1 matrix that have 1’s on the diagonal entries corresponding450

to At.451

2. dt = It · d ∈ Rn, i.e the projection of d onto At.452

3. Dt = It ·D = diag(dt) ∈ Rn×n.453

4. volt = volG(At).454

5. Pt = It − 1
volt

√
dt

√
d′

t ∈ Rn×n.455

We define the matrix Wt = (PtD
− 1

2FtD
− 1

2Pt)δ, where δ = Θ(logn) is set in Lemma 33,456

that plays a crucial role in this section. This definition is similar to the definition of Wt in457

Section 3.2, but with Pt instead of P . This makes us “focus” only on the remaining vertices458

At, as any row/column of Wt corresponding to a vertex v ∈ Rt is zero. The matrix Wt is459

used in this section to define the projections that our algorithm uses to update Ft. It is also460

used in Section 5.3 to define the potential that measures how far is the remaining part of the461

graph from a near expander. In particular, we show in Lemma 33 and Corollary 34 that if462

W 2
T has small eigenvalues (which will be the case when the potential is small) then AT is463

near-expander in GT .464

Let r ∈ Rn be a random unit vector. Consider the projections ui = 1√
d(i)

⟨Wt(i), r⟩, for465

i ∈ At. Note that because Pt

√
dt = 0, and Wt is symmetric:466

∑
i∈At

d(i)ui =
∑
i∈At

√
d(i) ⟨Wt(i), r⟩ =

〈∑
i∈At

√
d(i)Wt(i), r

〉
=
〈
Wt

√
dt, r

〉
= 0467

468

We use the following lemma to partition (some of) the remaining vertices into two469

multisets Al
t and Ar

t .13 The lemma follows by applying Lemma 3.3 in [22] on the multiset of470

the ui’s, where each ui appears with multiplicity of d(i).471

▶ Lemma 20 (Lemma 3.3 in [22]). Given ui ∈ R for all i ∈ At, such that
∑

i∈At
d(i)ui = 0,472

we can find in time O(|At| · log(|At|)) a multiset of source nodes Al
t ⊆ At, a multiset of target473

nodes Ar
t ⊆ At, and a separation value η such that each i ∈ At appears in Al

t ∪Ar
t at most474

d(i) times, and additionally:475

1. η separates the sets Al
t, A

r
t , i.e., either maxi∈Al

t
ui ≤ η ≤ minj∈Ar

t
uj, or mini∈Al

t
ui ≥476

η ≥ maxj∈Ar
t
uj,477

2. |Ar
t | ≥ volt

2 , |Al
t| ≤ volt

8 ,478

3. ∀i ∈ Al
t : (ui − η)2 ≥ 1

9u
2
i ,479

4.
∑

i∈Al
t
miu

2
i ≥ 1

80
∑

i∈At
d(i)u2

i , where mi is the number of times i appears in Al
t.480

12 These variables are the analogs of I, d, D, vol(G) and P (respectively) from Section 3.2 in G[At].
13 Note that this does not produce a bisection of V .
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Note that a vertex could appear both in Al
t and in Ar

t , if uij = η. The cut player sends481

Al
t, A

r
t and At to the matching player.482

In turn, the matching player (see Subsection 4.4) returns a cut (St, At \St) and a matching483

Mt of Al
t \ St to Ar

t \ St (each vertex of Al
t is matched to a vertex of Ar

t ). We add self-loops484

to Mt to preserve the degrees (that is, Mt is d-stochastic). Define Nt = δ−1
δ D + 1

δMt. The485

cut player then updates Ft similarly to Section 3.2: Ft+1 = Nt · D−1FtD
−1Nt. Like in486

the previous sections, we also define the graph Gt+1 as Gt+1 = Gt ∪ Mt.14. We define487

At+1 = At \ St.488

4.4 Matching player489

The matching player receives Al
t and Ar

t and the current At. For a vertex v ∈ V , denote by490

mv the number times v appears in Al
t, and by m̄v the number of times v appears in Ar

t . The491

matching player solves the flow problem on G[At], specified by Lemma 21 below. This lemma492

is similar to Lemma B.6 in [23] and is proved using the Bounded-Distance-Flow algorithm493

(called Unit-Flow by [13, 23]). The details are provided in the full version of this paper [1].494

Note that we can get running time of Õ(m) mentioned in the introduction by replacing this495

subroutine is with a fair-cut computation as shown in [17, Section 8].496

▶ Lemma 21. Let G = (V,E) be a graph with n vertices and m edges, let Al, Ar ⊆ V be497

multisets such that |Ar| ≥ 1
2m, |A

l| ≤ 1
8m, and let 0 < ϕ < 1

log n be a parameter. For a vertex498

v ∈ V , denote by mv the number times v appears in Al, and by m̄v the number of times499

v appears in Ar. Assume that mv + m̄v ≤ d(v). We define the flow problem Π(G), as the500

problem in which a source s is connected to each vertex v ∈ Al with an edge of capacity mv501

and each vertex v ∈ Ar is connected to a sink t with an edge of capacity m̄v. Every edge of502

G has the same capacity c = Θ
(

1
ϕ log n

)
, which is an integer. A feasible flow for Π(G) is a503

maximum flow that saturates all the edges outgoing from s. Then, in time O(m
ϕ ), we can504

find either505

1. A feasible flow f for Π(G); or506

2. A cut S where ΦG(S, V \ S) ≤ 7
c = O(ϕ logn), vol(V \ S) ≥ 1

3m and a feasible flow for507

the problem Π(G− S), where we only consider the sub-graph G[V \ S ∪ {s, t}] (that is,508

vertices v ∈ Al \S are sources of mv units, and vertices v ∈ Ar \S are sinks of m̄v units).509

▶ Remark 22. It is possible that Al ⊆ S, in which case the feasible flow for Π(G − S) is510

trivial (the total source mass is 0).511

Let St be the cut returned by the lemma. If the lemma terminates with the first case, we512

denote St = ∅. Since c is an integer, we can decompose the returned flow into a set of513

paths (using e.g. dynamic trees [26]), each carrying exactly one unit of flow from a vertex514

u ∈ Al
t \St to a vertex v ∈ Ar

t \St. Note that multiple paths can route flow between the same515

pair of vertices. If u ∈ Al
t ∩ Ar

t then it is possible that a path starts and ends at u. Each516

u ∈ Al
t \ St is the endpoint of exactly mu ≤ d(u) paths, and each v ∈ Ar

t \ St is the endpoint517

of at most m̄v ≤ d(v) paths. Define the “matching”15 M̃t as M̃t = ((ui, vi))
|Al

t\St|
i=1 , where518

ui and vi are the endpoints of path i. We can view M̃t as a symmetric n× n matrix, such519

that M̃t(u, v) is the number of paths from u to v. We turn M̃t into a d-stochastic matrix by520

increasing its diagonal entries by d− M̃t1n. Formally, we set Mt := M̃t + diag(d− M̃t1n).521

14 Gt+1 may have self-loops.
15 Note that this is not a matching or a d-matching, but rather a graph that connects vertices of Aℓ

t to
vertices of Ar

t , whose degrees are bounded by d.

ICALP 2023



56:14 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

Notice that d − M̃t1n has only non-negative entries, so Mt also has non-negative entries.522

Intuitively, we can think of Mt as the response of the matching player to the subsets Al
t and523

Ar
t given by the cut player.524

5 Analysis525

This section is organized as follows. Subsection 5.1 presents in detail the algorithm for526

Theorem 17. Subsection 5.2 shows that Ft is embeddable in Gt with congestion 4
δ and that527

Gt is embeddable in G with congestion c · t. Subsection 5.3 shows that if we reach round T ,528

then with high probability, AT is a near Ω(ϕ)-expander in G. Finally, in Subsection 5.4 we529

prove Theorem 17.530

5.1 The Algorithm531

Similarly to Section 3.2, let δ = Θ(logn) be a power of 2, let T = Θ(log2 n) and c = Θ( 1
ϕ log n ).532

We choose c to be an integer. The algorithm follows along the same lines as the algorithm533

of SW in Section 4.1. The only modifications are the usage of our new cut player and that534

the algorithm stops if vol(Rt) > m·c·ϕ
70 = Ω( m

log n ). In each round t, we implicitly update Ft535

(see Section 4.3). Like SW, in order to keep the running time near linear, we use the flow536

routine Bounded-Distance-Flow [13, 23] which is mentioned in Subsection 4.4. This routine537

may also return a cut St ⊆ At with ΦG[A](St, At \ St) ≤ 1
c , in which case we “move” St to538

Rt+1. After T rounds, FT certifies that the remaining part of AT is a near ϕ-expander.539

5.2 Ft is embeddable in G540

To begin the analysis of the algorithm, we first define a blocked matrix. This notion will be541

useful when our matrices “operate” only on vertices of At.542

▶ Definition 23. Let A ⊆ V . A matrix B ∈ Rn×n is A-blocked if B(i, j) = 0 for all i ̸= j543

such that (i, j) /∈ A×A.544

▶ Lemma 24. The following holds for all t:545

1. Mt, Nt, Ft and Wt are symmetric.546

2. Mt, Nt and Ft are d-stochastic.547

3. Mt and Nt are At+1-blocked.548

▶ Lemma 25. For all rounds t, Ft is embeddable in Gt with congestion 4
δ .549

▶ Lemma 26. For all rounds t, Gt is embeddable in G with congestion ct.550

5.3 AT is a near expander in FT551

In this section we prove that after T = Θ(log2 n) rounds, with high probability, AT is a near552

Ω(1)-expander in FT , which will imply that it is a near Ω(ϕ)-expander in G.553

The section is organized as follows. Lemma 27 contains matrix identities and Lemma 28554

specifies a spectral property that our proof requires. We then define a potential function and555

lower bound the decrease in potential in Lemmas 29-32. Finally, in Lemma 33 and Corollary556

34 we use the lower bound on the potential at round T , to show that with high probability557

AT is a near Ω(1)-expander in FT and a near Ω(ϕ)-expander in G.558

▶ Lemma 27. The following relations hold for all t:559
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1. For any At-blocked d-stochastic matrix B ∈ Rn×n we have ItD
− 1

2BD− 1
2 = D− 1

2BD− 1
2 It560

and Pt ·D− 1
2BD− 1

2 = D− 1
2BD− 1

2 · Pt.561

2. ItPt = Pt, I2
t = It and P 2

t = Pt.562

3. PtPt+1 = Pt+1Pt = Pt+1.563

4. Pt = D− 1
2 L( 1

volt
dtd

′
t)D− 1

2 (recall the Laplacian defined in Definition 7).564

5. for any v ∈ Rn, it holds that v′L
(

1
volt

dtd
′
t

)
v =

∥∥∥D 1
2
t v
∥∥∥2

2
− 1

volt
⟨v, dt⟩2.565

6. For any B ∈ Rn×n, Tr(ItBB
′) =

∑
i∈At

∥B(i)∥2
2.566

We define the potential ψ(t) = Tr[W 2
t ] =

∑
i∈At

∥Wt(i)∥2
2, where Wt was defined as567

Wt = (PtD
− 1

2FtD
− 1

2Pt)δ. This is the same potential from Section 3.2 with the new definition568

of Wt. Intuitively, by projecting using Pt instead of P , the potential only “cares” about the569

vertices of At. As show in Lemma 33, having small potential will certify that AT is a near570

expander in Ft.571

Before we bound the decrease in potential, we recall Definition 7 of a normalized Laplacian572

N (A) = D− 1
2 L(A)D− 1

2 = I −D− 1
2AD− 1

2 , where A is a symmetric d-stochastic matrix.573

▶ Lemma 28. For any matrix A ∈ Rn×n, Tr(A′(I−(D− 1
2NtD

− 1
2 )4δ)A) ≥ 1

3 Tr(A′N (Mt)A).574

The following lemma bounds the decrease in potential. The bound takes into account575

both the contribution of the matched vertices and the removal of St from At.576

▶ Lemma 29. For each round t,577

ψ(t) − ψ(t+ 1) ≥ 1
3

∑
{i,k}∈Mt

∥∥∥∥∥
(
Wt(i)√
d(i)

− Wt(k)√
d(k)

)∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

578

Proof. To simplify the notation, we denote N̄t := D− 1
2NtD

− 1
2 and F̄t := D− 1

2FtD
− 1

2 . We579

rewrite the potential in the next iteration as follows:580

ψ(t+ 1) = Tr(W 2
t+1) = Tr

((
Pt+1D

− 1
2Ft+1D

− 1
2Pt+1

)2δ
)

581

= Tr
((

Pt+1D
− 1

2 (NtD
−1FtD

−1Nt)D− 1
2Pt+1

)2δ
)

582

= Tr
((

Pt+1D
− 1

2 (NtD
− 1

2D− 1
2FtD

− 1
2D− 1

2Nt)D− 1
2Pt+1

)2δ
)

583

= Tr
((
Pt+1N̄tF̄tN̄tPt+1

)2δ
)

(6)= Tr
((
N̄tPt+1F̄tPt+1N̄t

)2δ
)

584

(7)= Tr
((
N̄tPt+1PtF̄tPtPt+1N̄t

)2δ
)

= Tr
((
N̄tPt+1(PtF̄tPt)Pt+1N̄t

)2δ
)
,585

586

where equality (6) follows from Lemma 27 (1) for Nt (which is At+1-blocked d-stochastic587

by Lemma 24), and equality (7) follows from Lemma 27 (3).588

By Properties (1) and (2) of Lemma 27 it holds that N̄t+1Pt+1 = Pt+1N̄t+1 = Pt+1N̄t+1Pt+1.589
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Therefore, the potential can be written in terms of symmetric matrices:590

ψ(t+ 1) = Tr
((

(Pt+1N̄tPt+1)(PtF̄tPt)(Pt+1N̄tPt+1)
)2δ
)

591

≤ Tr((Pt+1N̄tPt+1)2δ(PtF̄tPt)2δ(Pt+1N̄tPt+1)2δ)592

(2)= Tr((Pt+1N̄tPt+1)4δ(PtF̄tPt)2δ) = Tr((N̄tPt+1)4δW 2
t )593

(4)= Tr(N̄4δ
t Pt+1W

2
t ) (5)= Tr(N̄2δ

t Pt+1N̄
2δ
t W 2

t ) (6)= Tr(WtN̄
2δ
t Pt+1N̄

2δ
t Wt)594

(7)= Tr(WtN̄
2δ
t D− 1

2 L
(

1
volt+1

dt+1d
′
t+1

)
D− 1

2 N̄2δ
t Wt)595

= Tr
((

D− 1
2 · N̄2δ

t Wt

)′
· L
(

1
volt+1

dt+1d
′
t+1

)
·
(
D− 1

2 · N̄2δ
t Wt

))
,596

597

where the inequality follows from Fact 2, equality (2) follows from Fact 1. Equalities (4) and598

(5) follow from Properties (1) and (2) of Lemma 27 (and from the fact that Nt is At+1-blocked599

d-stochastic, by Lemma 24). Equality (6) again uses Fact 1, and equality (7) follows from600

Lemma 27 (4).601

Let Zt = D− 1
2 · N̄2δ

t Wt. By applying Lemma 27 (5) we get602

ψ(t+ 1) ≤ Tr
(
Z ′

tL
(

1
volt+1

dt+1d
′
t+1

)
Zt

)
=

n∑
i=1

(Zt(, i))′L
(

1
volt+1

dt+1d
′
t+1

)
Zt(, i)603

(2)=
n∑

i=1

(∥∥∥D 1
2
t+1Zt(, i)

∥∥∥2

2
− 1

volt+1
⟨Zt(, i), dt+1⟩2

)
≤

n∑
i=1

∥∥∥D 1
2
t+1Zt(, i)

∥∥∥2

2
604

=
n∑

i=1

∑
j∈At+1

(√
d(j)Zt(j, i)

)2
=

∑
j∈At+1

∥∥∥(D 1
2
t+1Zt

)
(j)
∥∥∥2

2

(5)=
∑

j∈At+1

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2605

=
∑

j∈At

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 −
∑
j∈St

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 , (1)606

607

where equality (2) holds by Property (5) of Lemma 27 and equality (5) holds since we only608

sum rows in At+1. Since N̄t is diagonal outside At+1 (by the definition of Mt), we have that609 (
N̄2δ

t Wt

)
(j) = Wt(j), for every j ∈ St. Thus,610

∑
j∈St

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 =
∑
j∈St

∥Wt(j)∥2
2 . (2)611

By Lemma 27 (6), we get612

∑
j∈At

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 = Tr(It · N̄2δ
t ·W 2

t · N̄2δ
t ) = Tr(N̄2δ

t · It ·W 2
t · N̄2δ

t )613

= Tr(N̄2δ
t ·W 2

t · N̄2δ
t ) = Tr(N̄4δ

t W 2
t ) (3)614

615

where second equality holds since Nt is At+1-blocked d-stochastic (by Lemma 24), so in616

particular it is At-blocked d-stochastic, and we can use Lemma 27 (1). The third equality617

holds because ItWt = It(PtF̄tPt)δ and ItPt = Pt (by Lemma 27 (2)), and the last equality618

follows from Fact 1. Plugging Equations (2) and (3) into (1) we get the following bound on619
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the decrease in potential:620

ψ(t) − ψ(t+ 1) ≥ Tr((I − N̄4δ
t )W 2

t ) +
∑
j∈St

∥Wt(j)∥2
2621

= Tr(Wt(I − N̄4δ
t )Wt) +

∑
j∈St

∥Wt(j)∥2
2 ≥ 1

3 Tr(WtN (Mt)Wt) +
∑
j∈St

∥Wt(j)∥2
2622

= 1
3 Tr((D− 1

2Wt)′L(Mt)(D− 1
2Wt)) +

∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

623

= 1
3

∑
{i,k}∈Mt

∥∥∥∥∥Wt(i)√
d(i)

− Wt(k)√
d(k)

∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

624

625

where the second inequality follows Lemma 28, and the last equality follows from by626

Laplacian matrix properties. ◀627

The following lemma states that the potential is expected to drop by a factor of 1 −628

Ω(1/ logn).629

▶ Lemma 30. For each round t,630

E

1
3

∑
{i,k}∈Mt

∥∥∥∥∥Wt(i)√
d(i)

− Wt(k)√
d(k)

∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

 ≥ 1
3000α lognψ(t) − 3

nα/16631

for every α > 48, where the expectation is over the unit vector r ∈ Rn.632

The following two corollaries follow by Lemmas 29 and 30.633

▶ Corollary 31. For each round t, E[ψ(t + 1)] ≤
(

1 − 1
3000α log n

)
ψ(t) + 3

nα/16 , where the634

expectation is over the unit vector r ∈ Rn.635

▶ Corollary 32 (Total Decrease in Potential). With high probability over the choices of r,636

ψ(T ) ≤ 1
n .637

The following lemma uses the low potential to derive the near-expansion of AT in FT .638

▶ Lemma 33 (Variation of Cheeger’s inequality). Let H = (V, Ē) be a graph on n vertices,639

such that FT is its weighted adjacency matrix. Assume that ψ(T ) ≤ 1
n . Then, AT is a near640

1
5 -expander in H.641

Proof. Recall that FT is symmetric and d-stochastic. Let k = vol(AT ). Let S ⊆ AT be a642

cut, and denote dS ∈ Rn to be the vector where dS(u) =
{
d(u) if u ∈ S,

0 otherwise. Additionally,643

denote ℓ = vol(S) ≤ 1
2k. Note that

∥∥√
dS

∥∥2
2 = ℓ.644

Denote by λ̄ ≥ 0 the largest singular value of XT := PTD
− 1

2FTD
− 1

2PT (square root of645

the largest eigenvalue of (PTD
− 1

2FTD
− 1

2PT )2). Because Tr(X2δ
T ) = ψ(T ) ≤ 1

n , we have in646

particular that the largest eigenvalue of X2δ
T is at most 1

n , so we have λ̄ ≤ 1
n

1
δ

. We choose647

δ = Θ(logn) such that 1
n

1
δ

≤ 1
20 , so λ̄ ≤ 1

20 .648

In order to prove near-expansion we need to lower bound |EFT
(S, V \ S)|. We do so by649

upper bounding |EFT
(S, S)| = 1

′
SFT1S . Note that 1′

SFT1S = 1
′
S(ITFT IT )1S . Observe the650
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following relation between XT and ITFT IT :651

D
1
2XTD

1
2 = D

1
2 (PTD

− 1
2FTD

− 1
2PT )D 1

2652

= D
1
2 (IT − 1

k

√
dT

√
d′

T )D− 1
2FTD

− 1
2 (IT − 1

k

√
dT

√
d′

T )D 1
2653

= (IT − 1
k
dT1

′
T )FT (IT − 1

k
1T d

′
T )654

= ITFT IT − 1
k
dT1

′
TFT IT − 1

k
ITFT1T d

′
T + 1

k2 dT1
′
TFT1T d

′
T .655

656

Rearranging the terms, we get657

ITFT IT = D
1
2XTD

1
2 + 1

k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T .658

659

Therefore660

|EFT
(S, S)| =1′

SFT1S = 1
′
S

(
D

1
2XTD

1
2 + 1

k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T

)
1S .661

662

We analyze the summands separately. The first summand can be bounded using λ̄, the663

largest singular value of XT :664

1
′
SD

1
2XTD

1
21S =

√
d′

SX
√
dS =

〈√
dS , X

√
dS

〉
≤
∥∥∥√dS

∥∥∥
2

∥∥∥XT

√
dS

∥∥∥
2

≤
∥∥∥√dS

∥∥∥2

2
λ̄ ≤ ℓ

20 ,665666

where the first inequality is the Cauchy-Schwartz inequality. Observe that the second and667

third summands are equal:668

1
k
1

′
SdT1

′
TFT IT1S = ℓ

k
1

′
TFT1S = ℓ

k
1

′
SFT1T = 1

k
1

′
SITFT1T d

′
T1S ,669

670

where the second equality follows by transposing and since FT is symmetric. We now671

bound the sum of the second, third and fourth summands:672

1
′
S

(
1
k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T

)
1S = 2ℓ

k
1

′
TFT1S − ℓ2

k21
′
TFT1T673

≤
(

2ℓ
k

− ℓ2

k2

)
1

′
TFT1S ≤

(
2ℓ
k

− ℓ2

k2

)
1

′FT1S =
(

2ℓ
k

− ℓ2

k2

)
d′
1S = ℓ

k

(
2 − ℓ

k

)
ℓ,674

675

where the first inequality follows since S ⊆ At. Note that ℓ
k ∈ [0, 1

2 ]. The last inequality676

is true because for ℓ
k in this range,

(
2ℓ
k − ℓ2

k2

)
≥ 0. Moreover, because ℓ

k ∈
[
0, 1

2
]
, we have677

ℓ
k

(
2 − ℓ

k

)
≤ 3

4 . Therefore, |EFT
(S, S)| ≤ 1

20ℓ+ 3
4ℓ = 4

5ℓ, and678

|E(S, V \ S)| =
∑
u∈S

∑
v∈V \S

FT (u, v) =
∑
u∈S

∑
v∈V

FT (u, v) −
∑
u∈S

∑
v∈S

FT (u, v)679

=
∑
u∈S

d(u) −
∑
u∈S

∑
v∈S

FT (u, v) ≥ ℓ− 4
5ℓ = ℓ

5 .680

681

So ΦG(S, V \ S) = |E(S,V \S)|
vol(S) ≥ 1

5 , and this is true for all cuts S ⊆ A with vol(S)
vol(A) ≤ 1

2 .682

◀683

▶ Corollary 34. If we reach round T , then with high probability, AT is a near Ω(ϕ)-expander684

in G.685
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Proof. Assume we reach round T . By Corollary 32 and Lemma 33, with high probability,686

AT is a near Ω(1)-expander in FT . By Lemma 25, FT is embeddable in GT with congestion687

O( 1
δ ). Note that GT is a union of T dG-matchings {Mt}T

t=1, each having dMt
= dG = dFT

.688

Therefore, dGT
= T · dFT

. So by Lemma 11, AT is a near Ω( δ
T )-expander in GT . By Lemma689

26, GT is embeddable in G with congestion cT . Together with the fact that dG = 1
T ·dGT

, we690

get by Lemma 11 again, that A is a near Ω( δ
cT )-expander in G. Recall that c = O

(
1

ϕ log n

)
,691

δ = Θ(logn), and T = O(log2 n). Therefore, A is an near Ω(ϕ)-expander in G. ◀692

5.4 Proof of Theorem 17693

We are now ready to prove Theorem 17.694

Proof of Theorem 17. Recall that St denotes the cut returned by Lemma 21 at iteration t,695

so that At+1 = At \ St.696

Observe first that in any round t, we have ΦG(At, Rt) ≤ 7
c = O(ϕ logn). This is because697

Rt =
⋃

0≤t′<t St′ and by Lemma 21, for each t′, ΦG[At′ ](St′ , V \ St′) ≤ 7
c = O(ϕ logn).698

Assume the algorithm terminates because vol(Rt) > m·c·ϕ
70 = Ω( m

log n ). We also have,699

by Lemma 21, that vol(At) = Ω(m) = Ω( m
log n ). Then (At, Rt) is a balanced cut where700

ΦG(At, Rt) = O(ϕ logn). We end in Case (2) of Theorem 17.701

Otherwise, the algorithm reached round T and we apply Corollary 34. If R = ∅, then we702

obtain the first case of Theorem 17 because the whole vertex set V is, with high probability, a703

near Ω(ϕ)-expander, which means that G is an Ω(ϕ)-expander. Otherwise, we write c = c1
ϕ log n704

for some constant c1, and let c0 := 7
c1

. We have ΦG(AT , RT ) ≤ 7
c = 7

c1
ϕ logn = c0ϕ logn.705

Additionally, vol(RT ) ≤ m·c·ϕ
70 = m·c1

70 log n = m
10c0 log n , and, with high probability, AT is a near706

Ω(ϕ)-expander in G, which means we obtain the third case of Theorem 17.707

To bound the running time, note that the algorithm performs at most T = Θ(log2 n)708

iterations and each iteration’s running time is dominated by computing Wt · r in O(t · δ ·m)709

and by running the matching player (Lemma 21) in O( m
ϕ ). ◀710
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